Skip to main content

Advertisement

Log in

Thermal Transport of Hybrid Liquid over Thin Needle with Heat Sink/Source and Darcy–Forchheimer Porous Medium Aspects

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The structure of needle is mostly similar as paraboloid of upset parallel to flow possesses and has huge applications in building and modern procedures including microstructure electronic gadgets and microscale cooling gadgets for thermal evacuation application. Based on these applications, an axisymmetric Darcy–Forchheimer flow and energy transport of hybrid nanoliquid over a slender moving needle is considered. Impact of heat sink/source and Newtonian heating is inspected. The dimensional nonlinear administering partial differential equations (PDEs) are modified to dimensionless nonlinear ordinary differential equations (ODEs) with assistance of similarity technique which is then explained numerically utilizing Runge–Kutta–Fehlberg scheme from Dsolve code MAPLE. It ought to be noticed that approval of results shows a decent concurrence with previously existing reports. It is noticed that the enhancing Forchheimer number and porosity parameter increase the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(Bi\) :

Newtonian heating parameter

\(c\) :

Size of needle

C f :

Skin friction

f :

Velocity

\(F\) :

Non-uniform inertia coefficient

\(h_{f}\) :

Heat transfer coefficient

\(k^{*}\) :

Permeability of porous space

\(k_{f}\) :

Thermal conductivity \(({\text{W}}/{\text{m}}\,{\text{K}})\)

\(n\) :

Shaped factor of nanoparticles

\(Nu\) :

Nusselt number

\(\Pr\) :

Prandtl number

\(\text{R} (x)\) :

Axisymmetric body surface shape

\(T\) :

Hybrid nanofluid temperature \((K)\)

\(T_{w}\) :

Constant temperature \((K)\)

\(T_{\infty }\) :

Constant ambient surface temperature \((K)\)

\(r,x\) :

Cylindrical coordinates which are in the radial \((u)\) and axial \((v)\) directions \(\left( {{\text{m}}/{\text{s}}} \right)\)

\(U\) :

Composite velocity

\(U_{w}\) :

Constant velocity

\(U_{\infty }\) :

Free stream velocity

\(\nu\) :

Kinematic viscosity \(({\text{m}}^{2} /{\text{s}})\)

\(\mu\) :

Dynamic viscosity \(({\text{N}}\,{\text{s}}/{\text{m}}^{2} )\)

\(\rho\) :

Density \(({\text{kg}}/{\text{m}}^{3} )\)

\(\alpha\) :

Thermal diffusivity \(({\text{m}}^{2} /{\text{s}})\)

\(\lambda\) :

Velocity ratio

\(\psi\) :

Stream function

\(\phi_{1} ,\phi_{2}\) :

Solid volume fraction \(\left( {{\text{kg}}/{\text{m}}^{3} } \right)\)

\(\theta\) :

Dimensionless temperature

\(s_{1}\) :

Solid nanoparticles of Al2O3

\(s_{2}\) :

Solid nanoparticles of Cu

nf:

Nanofluid

\({\text{hnf}}\) :

Hybrid nanofluid

References

  1. Lee, L.L.: Boundary layer over a thin needle. Phys. Fluids 10, 820 (1967)

    Article  Google Scholar 

  2. Ishak, A.; Nazar, R.; Pop, I.: Boundary layer flow over a continuously moving thin needle in a parallel free stream. Chin. Phys. Lett. 24, 2895–2897 (2007)

    Article  Google Scholar 

  3. Ahmad, S.; Arifin, N.M.; Nazar, R.; Pop, I.: Mixed convection boundary layer flow along vertical thin needles: assisting and opposing flows. Int. Commun. Heat Mass Transf. 35, 157–162 (2008)

    Article  Google Scholar 

  4. Sulochana, C.; Ashwinkumar, G.P.; Sandeep, N.: Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment. Eur.Phys. J. Plus 132, 387 (2017)

    Article  Google Scholar 

  5. Soid, S.K.; Ishak, A.; Pop, I.: Boundary layer flow past a continuously moving thin needle in a nanofluid. Appl. Therm. Eng. 114, 58–64 (2017)

    Article  Google Scholar 

  6. Krishna, P.M.; Sharma, R.P.; Sandeep, N.: Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows. Nucl. Eng. Technol. 49, 1654–1659 (2017)

    Article  Google Scholar 

  7. Sulochana, C.; Ashwinkumar, G.P.; Sandeep, N.: Boundary layer analysis of persistent moving horizontal needle in magnetohydrodynamic ferrofluid: a numerical study. Alex. Eng. J. 57, 2559–2566 (2018)

    Article  Google Scholar 

  8. Khan, M.W.A.; Khan, M.I.; Hayat, T.; Alsaedi, A.: Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation. Phys. B 534, 113–119 (2018)

    Article  Google Scholar 

  9. Choi, S.U.S.; Eastman, J. A.: Enhancing thermal conductivity of fluids with nanoparticles, development and applications of non-Newtonian flows, Siginer D.A.; Wang HP (eds), ASME MD, 231 (1995) 99–10.

  10. Hsiao, K.: Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl. Therm. Eng. 98, 850–861 (2016)

    Article  Google Scholar 

  11. Si, X.; Li, H.; Zheng, L.; Shen, Y.; Zhang, X.: A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate. Int. J. Heat Mass Transf. 105, 350–358 (2017)

    Article  Google Scholar 

  12. Sheikholeslami, M.; Shamlooei, M.: Magnetic source influence on nanofluid flow in porous medium considering shape factor effect. Phys. Lett. A 381, 3071–3078 (2017)

    Article  Google Scholar 

  13. Zhu, J.; Wang, S.; Zheng, L.; Zhang, X.: Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity. Appl. Math. Mech. 38, 125–136 (2017)

    Article  MathSciNet  Google Scholar 

  14. Sheikholeslami, M.; Darzi, M.; Sadoughi, M.K.: Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int. J. Heat Mass Transf. 122, 643–650 (2018)

    Article  Google Scholar 

  15. Afridi, M.I.; Tlili, I.; Qasim, M.; Khan, I.: Nonlinear Rosseland thermal radiation and energy dissipation effects on entropy generation in CNTs suspended nanofluids flow over a thin needle. Bound. Value Probl. 148, 148 (2018)

    Article  MathSciNet  Google Scholar 

  16. Izadi, M.; Mehryan, S.A.M.; Sheremet, M.A.: Natural convection of CuO-water micropolar nanofluids inside a porous enclosure using local thermal non-equilibrium condition. J Taiwan Inst Chem Eng 88, 89–103 (2018)

    Article  Google Scholar 

  17. Abbasi, F.M.; Shanakhat, I.; Shehzad, S.A.: Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J. Magn. Magn. Mater. 474, 434–441 (2019)

    Article  Google Scholar 

  18. Abbasi, F.M.; Shanakhat, I.; Shehzad, S.A.: Analysis of entropy generation in peristaltic nanofluid flow with Ohmic heating and Hall effects. Phys. Scr. 94, 025001 (2019)

    Article  Google Scholar 

  19. Shafee, A.; Haq, R.U.; Sheikholeslami, M.; Herki, J.A.A.; Nguyen, T.K.: An entropy generation analysis for MHD water based Fe3O4 ferrofluid through a porous semi annulus cavity via CVFEM. Int. Commun. Heat Mass Transf. 108, 104295 (2019)

    Article  Google Scholar 

  20. Turkyilmazoglu, M.: Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput. Methods Progr. Biomed. 179, 104997 (2019)

    Article  Google Scholar 

  21. Jana, S.; Salehi-Khojin, A.; Zhong, W.H.: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta 462, 45–55 (2007)

    Article  Google Scholar 

  22. Sundar, L.S.; Singh, M.K.; Sousa, A.C.M.: Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 52, 73–83 (2014)

    Article  Google Scholar 

  23. Xu, B.; Wang, B.; Zhang, C.; Zhou, J.: Synthesis and light-heat conversion performance of hybrid particles decorated MWCNTs/paraffin phase change materials. Thermochim. Acta 652, 77–84 (2017)

    Article  Google Scholar 

  24. Das, P.K.: A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J. Mol. Liq. 240, 420–446 (2017)

    Article  Google Scholar 

  25. Devi, P.A.; Devi, S.S.U.: Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int. J. Nonlinear Sci. Numer. Simul. 17, 249–257 (2016)

    Article  Google Scholar 

  26. Afridi, M.I.; Qasim, M.: Entropy generation and heat transfer in boundary layer flow over a thin needle moving in a parallel stream in the presence of nonlinear Rosseland radiation. Int. J. Therm. Sci. 123, 117–128 (2018)

    Article  Google Scholar 

  27. Afridi, M.I.; Tlili, I.; Goodarzi, M.; Osman, M.; Khan, N.A.: Irreversibility analysis of hybrid nanofluid flow over a thin needle with effects of energy dissipation. Symmetry 11, 663 (2019)

    Article  Google Scholar 

  28. Waini, I.; Ishak, A.; Pop, I.: Hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux. Int. J. Numer. Meth. Heat Fluid Flow 29, 4875–4894 (2019)

    Article  Google Scholar 

  29. Ramesh, G.K.: Influence of shape factor on hybrid nanomaterial in a cross flow direction with viscous dissipation. Phys. Scr. 94, 105224 (2019)

    Article  Google Scholar 

  30. Ramesh, G.K.; Shehzad, S.A.; Tlili, I.: Hybrid nanomaterial flow and heat transport in a stretchable convergent/divergent channel: a Darcy-Forchheimer model (English Edition). Appl. Math. Mech. 41 , 699–710 (2020)

    Article  Google Scholar 

  31. Ramesh, G.K.; Manjunatha, S.; Gireesha, B.J.: Impact of homogeneous-heterogeneous reactions in a hybrid nanoliquid flow due to porous medium. Heat Transf. Asian Res. 48, 3866–3884 (2019)

    Article  Google Scholar 

  32. Izadi, M.; Maleki, N.M.; Pop, I.; Mehryan, S.A.M.: Natural convection of a hybrid nanofluid subjected to non-uniform magnetic field within porous medium including circular heater. Int. J. Numer. Meth. Heat Fluid Flow 29, 1211–1231 (2019)

    Article  Google Scholar 

  33. Thriveni, K.; Mahanthesh, B.: Sensitivity analysis of nonlinear radiated heat transport of hybrid nanoliquid in an annulus subjected to the nonlinear Boussinesq approximation. J Therm Anal Calorim (2020). https://link.springer.com/article/10.1007%2Fs10973-020-09596-w

  34. Thriveni, K.; Mahanthesh, B.: Optimization and sensitivity analysis of heat transport of hybrid nanoliquid in an annulus with quadratic Boussinesq approximation and quadratic thermal radiation. Eur. Phys. J. Plus 135, 459 (2020)

    Article  Google Scholar 

  35. Mahanthesh, B.; Shehzad, S.A.; Ambreen, T.; Khan, S.U.: Significance of Joule heating and viscous heating on heat transport of MoS2-Ag hybrid nanofluid past an isothermal wedge. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09578-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, G.K., Shehzad, S.A. & Izadi, M. Thermal Transport of Hybrid Liquid over Thin Needle with Heat Sink/Source and Darcy–Forchheimer Porous Medium Aspects. Arab J Sci Eng 45, 9569–9578 (2020). https://doi.org/10.1007/s13369-020-04853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04853-4

Keywords

Navigation