Skip to main content
Log in

E2M: An Efficient Emergency Management System

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In an emergency situation, the required information is collected effectively by mobile devices. But, the low battery size of a mobile device with minimal computational sources is the bottlenecks. Hence the more power utilizing activities can be transferred to the cloud to minimize the load of the mobile devices. In fact, sometimes the lack of Internet access is an extremely difficult task to send mobile data from source to the target cloud. To overcome these problems, an Efficient Emergency Management System using NSGA-II optimization named as E2M has been proposed which works efficiently to manage the emergency situations. E2M is used to find the best mobile device which has higher rank and low Relative Network Load value by optimizing the accessible mobile devices in an emergency situation. The parameters such as precision, recall and F1-score values are used to measure the efficiency of E2M. The experimental results reveal that the E2M outperforms baseline algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, J.; Li, Q.; Khan, S.U.; Ghani, N.: Community-based cloud for emergency management. In: Proceedings of 2011 6th International Conference on System of Systems Engineering, 55–60. (2011)

  2. Mitra Karan, S.; Christer, Å.: A mobile cloud computing system for emergency management. IEEE Cloud Comput. 1(4), 30–38 (2014)

    Article  Google Scholar 

  3. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/q-and-a-c67-482177.html, last updated February 17, (2020)

  4. Ramchurn, S.D.; Feng, W.; Wenchao, J.; et al.: Human-agent collaboration for disaster response. J. Auton. Agents Multi-Agent Syst. 30(1), 1–30 (2015)

    Article  Google Scholar 

  5. Mitra, K.; Saguna, S.; Åhlund, C.: M 2 C 2 : A mobility man-agement system for mobile cloud computing, In: 2015 IEEE Wireless Communications and Networking Conference (WCNC), 1608–1613. (2015)

  6. Huibo, B.; Erol, G.: A cooperative emergency navigation framework using mobile cloud computing. Inf. Sci. Syst. 2014, 41–48 (2014)

    Google Scholar 

  7. Pati, B.; Sarkar, J.L.; Panigrahi, C.R.; Debbarma, S.: ecloud: An efficient transmission policy for mobile cloud computing in emergency areas, In: Progress in Intelligent Computing Techniques: Theory, Practice, and Applications, pp. 43–49, Springer, (2018)

  8. Zohreh, S.; Saeid, A.; Abdullah, G.; Rajkumar, B.: Heterogeneity in mobile cloud computing: taxonomy and open challenges. IEEE Commun. Surv. Tutor. 16(1), 869–876 (2014)

    Google Scholar 

  9. Kosta, S.; Hui, P.; Mortier, R.; Zhang, X.: ThinkAir.: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: Proceedings of the 31st IEEE International Conference on Computer Communications, 945–953. (2012)

  10. Zhou, B.; Dastjerdi, A.V.; Calheiros, R.N.; Srirama, S.N.; Buyya, R.: A context sensitive offloading scheme for mobile cloud computing service. In: Proceedings-2015 IEEE 8th International Conference on Cloud Computing, CLOUD 2015, 869–876. (2015)

  11. Panigrahi, C.R.; Sarkar, J.L.; Pati, B.; Bakshi, S: E3M: An energy efficient emergency management system using mobile cloud computing. 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems, ANTS 2016, 1–6. (2017)

  12. Bahl, P.; Han, R.Y.; Li, L.E.; Satyanarayanan, M.: Advancing the state of mobile cloud computing. In: Proceedings of the 3rd ACM Workshop on Mobile Cloud Computing and Services, 21–28. (2012)

  13. Panigrahi, C.R.; Tiwari, M.; Sarkar J.L.: EEOA : Improving energy efficiency of mobile cloudlets using efficient offloading approach. In proceedings of 9th IEEE International Conference on Advanced Networks and Telecommunica-tions Systems (IEEE ANTS), 1–6. (2015)

  14. Yin, Z.; Yu, F.R.; Bu, S.; Han, Z.: Joint cloud and wireless networks operations in mobile cloud computing environments with telecom operator cloud. IEEE Trans. Wirel. Commun. 14(7), 4020–4033 (2015)

    Article  Google Scholar 

  15. Changsheng, Y.; Kaibin, H.; Hyukjin, C.: Energy efficient mobile cloud computing powered by wireless energy transfer. IEEE J. Sel. Areas Commun. 34(5), 1757–1771 (2016)

    Article  Google Scholar 

  16. Cai, Y.; Yu, F.R.; Bu, S.: Dynamic operations of cloud radio access networks (C-RAN) for mobile cloud computing systems. IEEE Trans. Veh. Technol. 65(3), 1536–1548 (2016)

    Article  Google Scholar 

  17. Priyantha, B.; Lymberopoulos, D.; Liu, J.: EERS : Energy efficient responsive sleeping on mobile phones. ser. ACM PhoneSense’10, (2010)

  18. Oliver, E.; Keshav, S.: Data driven smartphone energy level prediction. University of Waterloo, Technical Report CS-2010-06, (2010)

  19. Shye, A.; Scholbrock, B.; Memik, G.: Into the wild: studying real user activity patterns to guide power optimizations for mobile architectures categories and subject descriptors. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, 168–178. (2009)

  20. Heiser, G.; Carroll, G.: An analysis of power consumption in a smartphone. In: Proceedings of the 2010 USENIX conference on USENIX annual technical conference, 21–21. (2010)

  21. Park, J.; Yu, H.; Lee, E.: Resource allocation techniques based on availability and movement reliability for mobile cloud computing. In: Proceedings of the 8 th Interna-tional Conference on Distributed Computing and Internet Technology, 263–264. (2012)

  22. You, C.; Huang, K.; Chae, H.: Energy efficient mobile cloud computing powered by wireless energy transfer. IEEE J. Sel. Areas Commun. 34(5), 1757–1771 (2016)

    Article  Google Scholar 

  23. Zhang, W.; Wen, Y.; Member, S.; Wu, D.O.: Collaborative task execution in mobile cloud computing under stochastic wireless channel. IEEE Trans. Wirel. Commun. 14(1), 81–93 (2015)

    Article  Google Scholar 

  24. Lin, C.H.; Hsiu, P.C.; Hsieh, C.K.: Dynamic backlight scaling optimization: a cloud-based energy-saving service for mobile streaming applications. IEEE Trans. Comput. 63(2), 335–348 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khan, A.R.; Xia, F.; Khan, A.N.: Context-aware mobile cloud computing and its challenges. IEEE Cloud Comput. 2(3), 42–49 (2015)

    Article  Google Scholar 

  26. Zhou, B.; Dastjerdi, A.V.; Calheiros, R.N.; Srirama, S.N.; Buyya, R.: mCloud : a context-aware offloading framework for heterogeneous mobile cloud. EEE Trans Serv. Comput. 1374(99), 1–14 (2015)

    Google Scholar 

  27. Pereira Orlando, R.E.; Rodrigues Joel, J.P.C.: Survey and analysis of current mobile learning applications. ACM Comput Surv. (CSUR). 46(2), 1–35 (2013)

    Article  Google Scholar 

  28. Yating, W.; Ding-chau, W.I.C.: A survey of mobile cloud computing applications : perspectives and challenges. Wirel. Personal Commun. 80(4), 1607–1623 (2014)

    Google Scholar 

  29. Yao Chuan, X.; Li, H.X.: Batch public auditing for distributed mobile cloud computing. Intern. J. High Perform. Comput. Netw. 8(2), 102–109 (2015)

    Article  Google Scholar 

  30. Majumder, A.; Sarkar, M.R.; Sarakar, J.L.: An architectural layer classification of energy conservation techniques in internet of things. In: Koç, E. (ed.) Internet of Things (IoT) Applications for Enterprise Productivity, pp. 270–307, IGI Global (2020)

  31. Chun, B.G.; Ihm, S.; Maniatis, P.; Naik, M.; Patti, A.: CloneCloud: elastic execution between mobile device and cloud. In Proceedings of 6th Conference on Computer Systems, 301–314. (2011)

  32. Mahadev, S.; Paramvir, B.; Ramon, C.; Nigel, D.: The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

    Article  Google Scholar 

  33. Kelenyi, I.; Nurmine, K.J.: CloudTorrent—energy-efficient bittorrent content sharing for mobile devices via cloud services. In: Proceedings of 7th IEEE Conference on Consumer Communications and Networking Conference, 646–647. (2010)

  34. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  35. Ramasamy, V.; Gomathy, B.; Sarkar, J.L.; Panigrahi, C.R.; Bibudhendu, P.; Abhishek, M.: \(EMC^2\) : an emergency management system using mobile cloud computing. IET Netw. 2(9), 64–73 (2020)

    Article  Google Scholar 

  36. Cuervo, E.; Balasubramanian, A.; Cho, D.-K.; Wolman, A.; Saroiu, S.; Chandra, R.; Bahl, P.: MAUI: making smartphones last longer with code offload. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, MobiSys, vol. 10, p. 4962. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1814433.1814441

  37. Panigrahi, C.R.; Sarkar, J.L.; Tiwary, M.; Pati, B.; Mohapatra, P.: DATALET: an approach to manage big volume of data in cyber foraged environment. J. Parallel Distrib. Comput. 131, 14–28 (2019)

    Article  Google Scholar 

  38. Giri S.K.; Panigrahi, C.R.; Pati, B.; Sarkar, J.L.: A novel approach to minimize energy consumption in cloud using task consolidation mechanism. In: Panigrahi, C., Pujari, A., Misra, S., Pati, B., Li, K.C. (eds.) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol. 714. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0224-4_12

  39. Sarkar, J..L.; Panigrahi, C.R.; Pati, B.; Trivedi, R.; Debbarma, S.: E2G: a game theory-based energy efficient transmission policy for mobile cloud computing. In: Saeed, K., Chaki, N., Pati, B., Bakshi, S., Mohapatra, D. (eds.) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol. 563. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6872-0_65

  40. Verma, R.K.; Pati, B.; Panigrahi, C.R.; Sarkar, J.L.; Mohapatra, S.D.: M2C: an energy-efficient mechanism for computation in mobile cloud computing. In: Saeed, K., Chaki, N., Pati, B., Bakshi, S., Mohapatra, D. (eds.) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 563. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6872-0_67

  41. Yang, X.; Yu, X.; Huang, H.; Zhu, H.: Energy efficiency based joint computation offloading and resource allocation in multi-access MEC systems. IEEE Access 7, 117054–117062 (2019)

    Article  Google Scholar 

  42. Sudip, M.; Subarna, C.: Social choice considerations in cloud-assisted WBAN architecture for post-disaster healthcare: data aggregation and channelization. Inf. Sci. 284, 95–117 (2014)

    Article  MathSciNet  Google Scholar 

  43. Wang, Y.; Wu, L.; Yuan, X.; Liu, X.; Li, X.: An energy-efficient and deadline-aware task offloading strategy based on channel constraint for mobile cloud workflows. IEEE Access 7, 69858–69872 (2019)

    Article  Google Scholar 

  44. Luo, Y.; Zeng, M.; Jiang, H.: Learning to tradeoff between energy efficiency and delay in energy harvesting-powered D2D communication: a distributed experience-sharing algorithm. IEEE Internet Things J. 6(3), 5585–5594 (2019)

    Article  Google Scholar 

  45. Pati, B.; Sarkar, J.L.; Panigrahi, C.R.: ECS: an energy-efficient approach to select cluster-head in wireless sensor networks. Arab. J. Sci. Eng. 42, 669–676 (2017)

  46. Mirsky, Y.; Shabtai, A.; Rokach, L.; Shapira, B.; Elovici, Y.: SherLock versus moriarty: a smartphone dataset for cybersecurity research. In: AISec ’16:1-12 Association for Computing Machinery; New York, NY, USA, (2016)

  47. Sarkar, J.L.; Panigrahi, C.R.; Pati, B.; Saha, A.K.; Majumder, A.: MAAS: a mobile cloud assisted architecture for handling emergency situations. Int. J. Commun. Syst. p. e3950 (2019). https://doi.org/10.1002/dac.3950

  48. Panigrahi, C.; Sarkar, J.; Pati, B.: Transmission in mobile cloudlet systems with intermittent connectivity in emergency areas. Digit. Commun. Netw. 4, 69–75 (2018)

    Article  Google Scholar 

  49. Tsai, C.; Huang, H.; Hung, C.; Wang, Y.: TDAM: a tree-based data aggregation mechanism in wireless sensor networks. In: 827-832, (2012)

  50. Janez, D.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Sarkar, J.L.; Majumder, A.; Panigrahi, C.R.; Roy, S.: Multitour: a multiple itinerary tourists recommendation engine. Electr. Commer. Res. Appl. 40, 100943 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, V., Gomathy, B. E2M: An Efficient Emergency Management System. Arab J Sci Eng 45, 10669–10682 (2020). https://doi.org/10.1007/s13369-020-04809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04809-8

Keywords

Navigation