Skip to main content

Advertisement

Log in

Evaluating the Chemical and Rheological Attributes of Aged Asphalt: Synergistic Effects of Maltene and Waste Engine Oil Rejuvenators

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The service life of road pavement reduces as it ages and loses its properties due to the exposure to varying traffic loads and climatic conditions. This study explores the potential rejuvenation of the aged asphalt properties to enable it to be reused in pavement by adding hybrid rejuvenator (WEO-MLT). The WEO-MLT is composed of waste engine oil and maltene (MLT). Four types of binders, namely virgin asphalt, aged asphalt, 40% aged asphalt and rejuvenated asphalt, were prepared and evaluated via rheological and chemical tests [e.g. storage stability, asphaltene-to-MLT ratio, dynamic shear rheometer, bending beam rheometer, Fourier transform infrared (FTIR), thermogravimetric analysis and stripping resistance tests]. The results revealed that the WEO-MLT markedly enhanced the properties of aged asphalt at low and high temperatures. In contrast, the outcomes of FTIR suggested that the ageing properties of asphalt were not improved significantly by WEO-MLT due to the presence of a carboxyl group in its composition. TGA indicated that the initial decomposition for rejuvenated asphalt was approximately close to virgin asphalt. The stripping resistance test divulged the comparable performance of the rejuvenated asphalt to that of virgin asphalt. Therefore, WEO-MLT can be potentially used in the rejuvenation of the aged asphalt, paving the way to sustainable and eco-friendly asphalt production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hussein, Z.; Yaacob, H.; Idham, M.; Hassan, N.; Choy, L.; Jaya, R.: restoration of aged bitumen properties using maltenes. In: IOP Conference Series: Materials Science and Engineering, vol. 1, p. 012014. IOP Publishing, London (2020)

  2. Nurul Hidayah, M.; Hainin, M.R.; Hassan, N.A.; Abdullah, M.E.: Rutting evaluation of aged binder containing waste engine oil. In: Advanced Materials Research, pp. 405–409. Trans Tech Publ. (2014).

  3. Lee, S.-J.; Amirkhanian, S.N.; Park, N.-W.; Kim, K.W.: Characterization of warm mix asphalt binders containing artificially long-term aged binders. Constr. Build. Mater. 23(6), 2371–2379 (2009)

    Article  Google Scholar 

  4. Cavalli, M.C.; Partl, M.N.; Poulikakos, L.D.: Measuring the binder film residues on black rock in mixtures with high amounts of reclaimed asphalt. J. Clean. Prod. 149, 665–672 (2017)

    Article  Google Scholar 

  5. Singh, D.; Sawant, D.: Understanding effects of RAP on rheological performance and chemical composition of SBS modified binder using series of laboratory tests. Int. J. Pavement Res. Technol. 9(3), 178–189 (2016)

    Article  Google Scholar 

  6. Ongel, A.; Hugener, M.: Impact of rejuvenators on aging properties of bitumen. Constr. Build. Mater. 94, 467–474 (2015)

    Article  Google Scholar 

  7. Zaumanis, M.; Mallick, R.B.; Frank, R.: Evaluation of rejuvenator’s effectiveness with conventional mix testing for 100% reclaimed Asphalt pavement mixtures. Transp. Res. Rec. 2370(1), 17–25 (2013)

    Article  Google Scholar 

  8. Qurashi, I.A.; Swamy, A.K.: Viscoelastic properties of recycled asphalt binder containing waste engine oil. J. Clean. Prod. 182, 992–1000 (2018)

    Article  Google Scholar 

  9. Liu, S.; Peng, A.; Wu, J.; Zhou, S.B.: Waste engine oil influences on chemical and rheological properties of different asphalt binders. Constr. Build. Mater. 191, 1210–1220 (2018)

    Article  Google Scholar 

  10. Rose, A.A.; Lenz, I.R.; Than, C.T.; Glover, C.J.: Investigation of the effects of recycled engine oil bottoms on asphalt field performance following an oxidation modeling approach. Pet. Sci. Technol. 34(21), 1768–1776 (2016)

    Article  Google Scholar 

  11. Lin, P.-S.; Wu, T.-L.; Chang, C.-W.; Chou, B.-Y.: Effects of recycling agents on aged asphalt binders and reclaimed asphalt concrete. Mater. Struct. 44(5), 911–921 (2011)

    Article  Google Scholar 

  12. Wang, F.; Fang, Y.; Chen, Z.; Wei, H.: Effect of waste engine oil on asphalt reclaimed properties. In: AIP Conference Proceedings, vol. 1, p. 020012. AIP Publishing, New York (2018).

  13. Jia, X.; Huang, B.; Moore, J.A.; Zhao, S.: Influence of waste engine oil on asphalt mixtures containing reclaimed asphalt pavement. J. Mater. Civ. Eng. 27(12), 04015042 (2015)

    Article  Google Scholar 

  14. Al Saffar, Z.H.; Yaacob, H.; Idham, M.K.; Saleem, M.K.; Lai, J.C.; Putra Jaya, R.: A review on rejuvenating materials used with reclaimed hot mix asphalt. Can. J. Civ. Eng. (2020). https://doi.org/10.1139/cjce-2019-0635

    Article  Google Scholar 

  15. Yang, C.; Xie, J.; Wu, S.; Amirkhanian, S.; Zhou, X.; Ye, Q.; Yang, D.; Hu, R.: Investigation of physicochemical and rheological properties of SARA components separated from bitumen. Constr. Build. Mater. 235, 117437 (2020)

    Article  Google Scholar 

  16. ASTM: Standard Test Methods for Quantitative Extraction of Asphalt Binder from Asphalt Mixtures. In: D2172/D2172M. (2017)

  17. ASTM: Standard practice for recovery of asphalt from solution using the rotary evaporator. In: D5404/D5404M (2012)

  18. Zaumanis, M.; Mallick, R.B.; Frank, R.: 100% recycled hot mix asphalt: a review and analysis. Resour. Conserv. Recycl. 92, 230–245 (2014)

    Article  Google Scholar 

  19. Ali, A.W.; Mehta, Y.A.; Nolan, A.; Purdy, C.; Bennert, T.: Investigation of the impacts of aging and RAP percentages on effectiveness of asphalt binder rejuvenators. Constr. Build. Mater. 110, 211–217 (2016)

    Article  Google Scholar 

  20. ASTM, D5892-00, Standard Specification for Type IV Polymer-Modified Asphalt Cement for Use in Pavement Construction, International, West Conshohocken, PA (2015).

  21. ASTM, D4124, Standard Test Method for separation of asphalt into four fractions. PA: ASTM International, West Conshohocken, PA (2018)

  22. ASTM: ASTM D7175-15. Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer, West Conshohocken, PA: ASTM International, (2015b)

  23. Gungat, L.; Hamzah, M.O.; Hasan, M.R.M; Valentin, J.: Warm mix and reclaimed asphalt pavement: a greener road approach. Int. Scholar. Sci. Res. Innov. 12(11), 1107–1112 (2018)

    Google Scholar 

  24. ASTM, D6648-16, Standard Test Method for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR), West Conshohocken, PA: ASTM International, (2016)

  25. Institute, A.: Performance Graded Asphalt Binder Specification and Testing, vol. 1. Asphalt Institute, Lexington (2003)

    Google Scholar 

  26. Feng, Z.-G.; Bian, H.-J.; Li, X.-J.; Yu, J.-Y.: FTIR analysis of UV aging on bitumen and its fractions. Mater. Struct. 49(4), 1381–1389 (2016)

    Article  Google Scholar 

  27. Lu, X.; Isacsson, U.: Effect of ageing on bitumen chemistry and rheology. Constr. Build. Mater. 16(1), 15–22 (2002)

    Article  Google Scholar 

  28. Negulescu, I., Mohammad, L., Daly, W., Abadie, C., Cueto, R., Daranga, C., Glover, I.: Chemical and rheological characterization of wet and dry aging of SBS copolymer modified asphalt cements: Laboratory and field evaluation (with discussion). J. Assoc. Asphalt Paving Technol. 75, 267–296 (2006)

    Google Scholar 

  29. Jia, X.; Huang, B.; Bowers, B.F.; Zhao, S.: Infrared spectra and rheological properties of asphalt cement containing waste engine oil residues. Constr. Build. Mater. 50, 683–691 (2014)

    Article  Google Scholar 

  30. Lamontagne, J.; Dumas, P.; Mouillet, V.; Kister, J.: Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens. Fuel 80(4), 483–488 (2011)

    Article  Google Scholar 

  31. Mouazen, M.; Poulesquen, A.; Vergnes, B.: Influence of thermomechanical history on chemical and rheological behavior of bitumen. Energy Fuels 25(10), 4614–4621 (2011)

    Article  Google Scholar 

  32. Hussein, A.A.; Jaya, R.P.; Hassan, N.A.; Yaacob, H.; Huseien, G.F.; Ibrahim, M.H.W.: Performance of nanoceramic powder on the chemical and physical properties of bitumen. Constr. Build. Mater. 156, 496–505 (2017)

    Article  Google Scholar 

  33. ASTM, E1131 Standard Test Method for Compositional Analysis by Thermogravimetry. In. West Conshohocken, PA: ASTM International, (2014)

  34. Ciryle, S.S.; Alexandre, P.; Emmanuel, C.: Evaluation of the potential use of waste sunflower and rapeseed oils-modified natural bitumen as binders for asphalt pavement design (2016)

  35. Laboratory, R.R.: Bituminous materials in road construction. In. England (1985)

  36. AASHTO T 182, Standard Method of Test for Coating and Stripping of Bitumen-Aggregate Mixtures, AASHTO Standards,, Washongton D.C. (2002).

  37. Liu, Y.; Apeagyei, A.; Ahmad, N.; Grenfell, J.; Airey, G.: Examination of moisture sensitivity of aggregate–bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests. Int. J. Pavement Eng. 15(7), 657–670 (2014)

    Article  Google Scholar 

  38. Sergeant, G.D.; Leung, R.; Barrett, D.: The effect of aging on the viscosity of bitumens produced from shale oil. Fuel Process. Technol. 37(1), 67–72 (1994)

    Article  Google Scholar 

  39. Behnood, A.; Gharehveran, M.M.: Morphology, rheology and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 112, 766–791 (2018)

    Article  Google Scholar 

  40. Cong, P.; Hao, H.; Zhang, Y.; Luo, W.; Yao, D.: Investigation of diffusion of rejuvenator in aged asphalt. Int. J. Pavement Res. Technol. 9(4), 280–288 (2016)

    Article  Google Scholar 

  41. Frantzis, P.: Environmental Attack on Adhesive Joints Part III: mechanisms of Failure. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 41(3), 405–415 (1998)

    Article  Google Scholar 

  42. Fernandes, S.R.; Silva, H.M.; Oliveira, J.R.: Developing enhanced modified bitumens with waste engine oil products combined with polymers. Constr. Build. Mater. 160, 714–724 (2018)

    Article  Google Scholar 

  43. Wang, Z.; Ye, F.: Experimental investigation on aging characteristics of asphalt based on rheological properties. Constr. Build. Mater. 231, 117158 (2020)

    Article  Google Scholar 

  44. Nayak, P.; Sahoo, U.C.: A rheological study on aged binder rejuvenated with Pongamia oil and Composite castor oil. Int. J. Pavement Eng. 18(7), 595–607 (2017)

    Article  Google Scholar 

  45. Zhang, R.; You, Z.; Wang, H.; Ye, M.; Yap, Y.K.; Si, C.: The impact of bio-oil as rejuvenator for aged asphalt binder. Constr. Build. Mater. 196, 134–143 (2019)

    Article  Google Scholar 

  46. Zhang, R.; You, Z.; Wang, H.; Chen, X.; Si, C.; Peng, C.: Using bio-based rejuvenator derived from waste wood to recycle old asphalt. Constr. Build. Mater. 189, 568–575 (2018)

    Article  Google Scholar 

  47. Singh, D.; Girimath, S.: Investigation of rheological properties and Superpave PG of PMB mixed with reclaimed asphalt pavement binders. Constr. Build. Mater. 126, 834–842 (2016)

    Article  Google Scholar 

  48. Cao, W.; Barghabany, P.; Mohammad, L.; Cooper III, S.B.; Balamurugan, S.: Chemical and rheological evaluation of asphalts incorporating RAP/RAS binders and warm-mix technologies in relation to crack resistance. Constr. Build. Mater. 198, 256–268 (2019)

    Article  Google Scholar 

  49. Mousavi, M.; Pahlavan, F.; Oldham, D.; Hosseinnezhad, S.; Fini, E.H.: Multiscale investigation of oxidative aging in biomodified asphalt binder. J. Phys. Chem. C 120(31), 17224–17233 (2016)

    Article  Google Scholar 

  50. Yan, C.; Huang, W.; Lv, Q.: Study on bond properties between RAP aggregates and virgin asphalt using binder bond strength test and Fourier transform infrared spectroscopy. Constr. Build. Mater. 124, 1–10 (2016)

    Article  Google Scholar 

  51. Petersen, J.C.; Glaser, R.: Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited. Road Mater. Pavement Des. 4, 795–819 (2011)

    Article  Google Scholar 

  52. Aydemir, E.B.; Ozkul, M.H.: Investigation of effect of bitumen chemical composition, elastomeric polymer and paraffin wax additives on the properties of bitumen by using response surface method. Constr. Build. Mater. 234, 117414 (2020)

    Article  Google Scholar 

  53. Bach, Q.-V.; Chen, W.-H.: Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review. Biores. Technol. 246, 88–100 (2017). https://doi.org/10.1016/j.biortech.2017.06.087

    Article  Google Scholar 

  54. Shi, H.; Xu, T.; Zhou, P.; Jiang, R.: Combustion properties of saturates, aromatics, resins, and asphaltenes in asphalt binder. Constr. Build. Mater. 136, 515–523 (2017)

    Article  Google Scholar 

  55. Mothé, M.G.; Leite, L.F.; Mothé, C.G.: Kinetic parameters of different asphalt binders by thermal analysis. J. Therm. Anal. Calorim. 106(3), 679–684 (2011)

    Article  MATH  Google Scholar 

  56. Kok, M.V.: Clay concentration and heating rate effect on crude oil combustion by thermogravimetry. Fuel Process. Technol. 96, 134–139 (2012)

    Article  Google Scholar 

  57. Frigerio, F.; Molinari, D.: A multiscale approach to the simulation of asphaltenes. Comput. Theor. Chem. 975(1–3), 76–82 (2011)

    Article  Google Scholar 

  58. Jakarni, F.M.; Rosli, M.F.; Yusoff, N.I.M.; Aziz, M.M.A.; Muniandy, R.; Hassim, S.: An overview of moisture damage performance tests on asphalt mixtures. Jurnal Teknologi 78(7–2) (2016)

  59. Yao, H.; Dai, Q.; You, Z.: Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydrated lime modified asphalt mixtures. Constr. Build. Mater. 101, 536–547 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Ministry of Education Malaysia for funding this work through the Fundamental Research Grant Scheme (Grant Numbers R.J130000.7851.5F019, Q.J130000.2651.16J15, and R.J130000.7846.4F827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haryati Yaacob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Saffar, Z.H., Yaacob, H., Mohd Satar, M.K.I. et al. Evaluating the Chemical and Rheological Attributes of Aged Asphalt: Synergistic Effects of Maltene and Waste Engine Oil Rejuvenators. Arab J Sci Eng 45, 8685–8697 (2020). https://doi.org/10.1007/s13369-020-04842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04842-7

Keywords

Navigation