Skip to main content
Log in

A mixed virtual element method for the vibration problem of clamped Kirchhoff plate

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we give a presentation of virtual element method for the approximation of the vibration problem of clamped Kirchhoff plate, which involves the biharmonic eigenvalue problem. Following the theory of Babǔska and Osborn, the error estimates of the discrete scheme for the degree k ≥ 2 of polynomials are standard results. However, when considering the case k = 1, we can not apply the technical framework of classical eigenvalue problem directly. Based on the spectral approximation theory, the theory of mixed virtual element method and mixed finite element method for the Stokes problem, the convergence analysis for eigenvalues and eigenfunctions is analyzed and proved. Finally, some numerical experiments are reported to show that the proposed numerical scheme can achieve the optimal convergence order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projections for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., Beirão Da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer Anal. 52, 386–404 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Beirão Da Veiga, L., Scacchi, S., Verani, M.: A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 36–56 (2016)

    MATH  Google Scholar 

  4. Babǔska, I., Osborn, J.: Finite element Galerkin approximation of the eigenvalues and eigenfunctions of selfadjoint problems. Math. Comp. 52 (186), 275–297 (1989)

    MathSciNet  Google Scholar 

  5. Babǔska, I., Osborn, J.: Eigenvalue problems. In: Handbook of numerical analysis, Vol. II North-Holland, Amsterdam, pp 641–787 (1991)

  6. Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: H(div) and H(curl)-conforming VEM. Numer. Math. 133(2), 303–332 (2015)

    MATH  Google Scholar 

  8. Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50(3), 727–747 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element methods for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Beirão Da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Engrg. 295, 327–346 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Beirão Da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Beirão Da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer Anal. 51(2), 509–535 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Beirão Da Veiga, L., Manzini, G.: A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34(2), 759–781 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Beirão Da Veiga, L., Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the acoustic vibration problem. Numer. Math. 136 (3), 725–763 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Benedetto, M.F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech Engrg. 311, 18–40 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Bermúdez, A., Durán, R., Muschietti, A., Rodríguez, R., Solomin, J.: Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal. 32, 1280–1295 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Bossavit, A.: Solving Maxwell’s equations in a closed cavity and the question of spurious modes. IEEE Trans. Magnetics 26, 702–705 (1990)

    Google Scholar 

  19. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer Anal. 48(4), 1227–1240 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Cáceres, E., Gatica, G.N.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37, 296–331 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27, 707–743 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for quasi-Newtonian Stokes flows. SIAM J. Numer Anal. 56, 317–343 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Calo, V., Cicuttin, M., Deng, Q., Ern, A.: Spectral approximation of elliptic operators by the hybrid high-order method. Math. Comput. 88, 1559–1586 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Cangiani, A., Gardini, F., Manzini, G.: Comput. Methods Appl. Mech Engrg. Convergence of the mimetic finite difference method for eigenvalue problems in mixed form 200, 1150–1160 (2011)

    Google Scholar 

  25. Canuto, C.: Eigenvalue approximation by mixed methods. R.A.I.R.O Anal. Numer. 12(1), 27–50 (1978)

    MathSciNet  MATH  Google Scholar 

  26. Cao, J., Wang, Z., Cao, W., Chen, L.: A mixed Legendre-Galerkin spectral method for the buckling problem of simply supported Kirchhoff plates. Bound. Value Probl. 34 (2017)

  27. Certik, O., Gardini, F., Manzini, G., Mascotto, L., Vacca, G.: The p- and hp-versions of the virtual element method for elliptic eigenvalue problems. Comput. Math. Appl. 79(7), 2035–2056 (2020)

    MathSciNet  Google Scholar 

  28. Certik, O., Gardini, F., Manzini, G., Vacca, G.: The virtual element method for eigenvalue problems with potential terms on polytopic meshes. Appl. Math. 63(3), 333–365 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Cliffe, K., Hall, E.: Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows. SIAM J. Sci Comput. 31, 4607–4632 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Dassi, F., Vacca, G.: Bricks for the mixed high-order virtual element method: projectors and differential operators. Appl. Numer. Math. 155, 140–159 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. Part 1: the problem of convergence. RAIRO Anal. Numer. 12, 97–112 (1978)

    MathSciNet  MATH  Google Scholar 

  32. Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. Part 2: error estimates for the Galerkin method. RAIRO Anal. Numer. 12, 113–119 (1978)

    MathSciNet  MATH  Google Scholar 

  33. Gangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Gardini, F., Manzini, G., Vacca, G.: The nonconforming virtual element method for eigenvalue problems. ESAIM Math. Model. Numer. Anal. 53(3), 749–774 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Gardini, F., Vacca, G.: Virtual element method for second order elliptic eigenvalue problems. IMA J. Numer Anal. 38(4), 2026–2054 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for a nonlinear Brinkman model of porous media flow. Calcolo 55, 21 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Girault, V., Raviart, P.: Finite element methods for Navier-Stokes equations. Theory and Algorithms. Springer, Berlin (1986)

    MATH  Google Scholar 

  38. Grisvard, P.: Singularities in boundary problems. MASSON and Springer (1985)

  39. Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problems of plate bending. Publ. RIMS, Kyoto Univ. 14, 399–414 (1978)

    MathSciNet  MATH  Google Scholar 

  40. Lü, T., Liem, C., Shih, T.: A fourth order finite difference approximation to the eigenvalues of a clamped plate. J. Comput. Math. 6, 267–271 (1988)

    MathSciNet  MATH  Google Scholar 

  41. Meng, J., Mei, L.: The matrix domain and the spectra of a generalized difference operator. J. Math. Anal. Appl. 470, 1095–1107 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Meng, J., Mei, L.: Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering. Appl. Math. Comput. 381, 125307 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Meng, J., Mei, L.: A linear virtual element method for the Kirchhoff plate buckling problem. Appl. Math. Lett. 106188, 103 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Meng, J., Zhang, Y., Mei, L.: A virtual element method for the Laplacian eigenvalue problem in mixed form. Appl. Numer. Math. 156, 1–13 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Monzón, G.: A virtual element method for a biharmonic Steklov eigenvalue problem. Adv. Pure Appl. Math. 10(4), 325–337 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Mora, D., Rivera, G.: A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA J. Numer. Anal. 40, 322–357 (2020)

    MathSciNet  Google Scholar 

  47. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue. Math. Models Methods Appl. Sci. 25(8), 1421–1445 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Mora, D., Rivera, G., Rodríguez, R.: A posteriori error estimates for a virtual element method for the Steklov eigenvalue. Comput. Math. Appl. 74(9), 2172–2190 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Mora, D., Rivera, G., Velásquez, I.: A virtual element method for the vibration problem of Kirchhoff plates. ESAIM Math. Model. Numer. Anal. 52, 1437–1456 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci. 28 (14), 2803–2831 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Mora, D., Velásquez, I.: Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech Engrg. 112687, 360 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Srivastava, P., Kumar, S.: Fine spectrum of the generalized difference operator △uv, over the sequence space 1. Appl. Math. Comput. 218, 6407–6414 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Sun, J., Zhou, A.: Finite element methods for eigenvalue problems CRC press (2016)

  54. Tabarraei, A., Sukumar, N.: Conforming polygonal finite elements. Int. J. Numer. Methods Engrg. 61, 2045–2066 (2004)

    MathSciNet  MATH  Google Scholar 

  55. Wang, L., Xiong, C., Wu, H., Luo, F.: A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems. Adv. Comput. Math. 45, 2623–2646 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Zhai, Q., Xie, H., Zhang, R., Zhang, Z.: Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem. J. Sci. Comput. 79, 914–934 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We wish to thank the referee for his/her constructive comments and suggestions.

Funding

The work is supported by the Science Challenge Project (No.TZ2016002) and the Fundamental Research Funds for the Central Universities (No.xzy022019040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liquan Mei.

Additional information

Communicated by: Lourenco Beirao da Veiga

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Mei, L. A mixed virtual element method for the vibration problem of clamped Kirchhoff plate. Adv Comput Math 46, 68 (2020). https://doi.org/10.1007/s10444-020-09810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09810-1

Keywords

Mathematics Subject Classification (2010)

Navigation