Skip to main content
Log in

Cd(II) and Cd(II)–Eu(III) Complexes with Pentafluorobenzoic Acid Anions and N-Donor Ligands: Synthesis and Structures

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reactions of cadmium(II) and europium(III) pentafluorobenzoates ([Cd(Pfbz)\(\left( {{{{\text{H}}}_{{\text{2}}}}{\text{O}}} \right)_{{\text{4}}}^{ + }\)}nn(Pfbz)] (I) and [Eu2(Pfbz)6(H2O)8] ∙ 2H2O (II), respectively; Pfbz is pentafluorobenzoic acid anion) with the N-donor ligands (pyridine (Py), 2-phenylpyridine (Phpy), and 3-ethynylpyridine (Etypy)) afford a series of new Cd–Ln complexes with Pfbz anions and Py or its substituted analogues: [Cd2Eu2(Pfbz)10(Py)4] (III), [Cd2Eu2(Pfbz)10(Phpy)2(MeCN)2] · 5MeCN (IV), and [CdEu2(Pfbz)8(Etypy)(H2O)2]n ∙ 3nMeCN ∙ n(Etypy) (VI). Similar reactions of compounds I and II with 2,4-lutidine (Lut), isoquinoline (Iquin), 2,2'-biquinoline (Biquin), and 7,8-benzoquinoline (Bquin) give the following cadmium complexes as the major products of crystallization from the reaction solutions: [Cd(Pfbz)2(Lut)]n (V), [Cd(H2O)(Pfbz)2(Iquin)2]n (VII), [Cd(Рfbz)2(Biquin)] (VIII), and \([{\text{Cd}}{{({\text{Pfbz}})}_{{\text{3}}}}]_{n}^{-}\)n(HBquin)+ (IX), respectively. The X-ray diffraction data (CIF files CCDC nos. 1987805 (I), 1987808 (III), 1987829 (IV), 1987817 (V), 1987822 (VI), 1987823 (VII), 1987824 (VIII), and 1987826 (IX)) are examples of the formation of new unusual coordination polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Niekerk, J.N., van Schoening, F.R.L., and Talbot, J.H., Acta Crystallogr., 1953, vol. 6, p. 720.

    Google Scholar 

  2. Niekerk, J.N., van Schoening, F.R.L., Acta Crystallogr., 1953, vol. 6, p. 609.

    Google Scholar 

  3. Downie, T.C., Harrison, W., Raper, E.S., and Hepworth, M.A., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1971, vol. 27, p. 706.

    CAS  Google Scholar 

  4. Harrison, W. and Trotter, J., J. Chem. Soc., Dalton Trans., 1972, p. 956.

  5. Amma, E.L., Griffith, E.A.H., Charles, N.G., and Rodesiler, P.F., Abstr. Papers Am. Chem. Soc. (Summer), 1983, p. 39.

  6. Rodesiler, P.F., Griffith, E.A.H., Charles, N.G., and Amma, E.L., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1985, vol. 41, p. 673.

    Google Scholar 

  7. Xiang-Hu Huang, Peng-Zhi Hong, and Wen-Dong Song, Acta Crystallogr.,Sect. E: Cryst. Struct. Online, 2008, vol. 64, p. m175.

    CAS  Google Scholar 

  8. Golubichnaya, M.A., Sidorov, A.A., Fomina, I.G., et al., Russ. J. Inorg. Chem., 1999, vol. 44, p. 1479.

    Google Scholar 

  9. Burley, J.C. and Prior, T.J., Acta Crystallogr.,Sect. E: Cryst. Struct. Online, 2005, vol. 61, p. m1422.

    CAS  Google Scholar 

  10. Karmakar, A. and Baruah, J.B., Polyhedron, 2008, vol. 27, p. 3409.

    CAS  Google Scholar 

  11. Dey, D., Roy, S., Purkayastha, R.N.D., et al., J. Coord. Chem., 2011, vol. 64, p. 1165.

    CAS  Google Scholar 

  12. Karmakar, A., Sarma, R.J., and Baruah, J.B., Eur. J. Inorg. Chem., 2006, p. 4673.

  13. Eremenko, I.L., Nefedov, S.E., and Sidorov, A.A., Ino-rg. Chem., 1999, vol. 38, p. 3764.

    CAS  Google Scholar 

  14. Saxena, P. and Thirupathi, N., Polyhedron, 2015, vol. 98, p. 238.

    CAS  Google Scholar 

  15. Gao Zhu-Qing, Li Hong-Jin, and Gu Jin-Zh, Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 2004, vol. 30, p. 2803.

  16. Stoll, I., Brodbeck, R., Neumann, B., et al., CrystEngComm, 2009, vol. 11, p. 309.

    Google Scholar 

  17. Collings, J.C., Roscoe, K.P., Robins, E.G., et al., New J. Chem., 2002, vol. 26, p. 1740.

    CAS  Google Scholar 

  18. Imai, Y., Kawaguchi, K., Sato, T., et al., Mol. Cryst. Liq. Cryst., 2008, vol. 487, p. 153.

    CAS  Google Scholar 

  19. Williams, J.H., Cockcroft, J.K., and Fitch, A.N., Angew. Chem Int. Ed., 1992, vol. 31, p. 1655.

    Google Scholar 

  20. Cockcroft, J.K., Ghosh, R.E., Shephard, J.J., et al., CrystEngComm, 2017, vol. 19, p. 1019.

    CAS  Google Scholar 

  21. Kong, Y.-J., Li, P., Han, L.J., et al., Acta Crystallogr.,Sect. C: Cryst. Chem., 2017, vol. 73, p. 424.

    CAS  Google Scholar 

  22. Maas, H., Currao, A., and Calzaferri, G., Angew. Chem., Int. Ed. Engl., 2002, vol. 41, p. 2495.

    CAS  Google Scholar 

  23. Goldberg, A., Kiskin, M., Shalygina, O., et al., Chem. Asian J., 2016, vol. 11, p. 604.

    CAS  PubMed  Google Scholar 

  24. SMART (control) and SAINT (integration). Software. Version 5.0, Madison: Bruker AXS Inc., 1997.

    Google Scholar 

  25. Sheldrick, G.M., SADABS, Madison: Bruker AXS Inc., 1997

    Google Scholar 

  26. Sheldrick, G.M., Acta Crystallogr.,Sect. C: Cryst. Chem., 2015, vol. 71, p. 3.

    Google Scholar 

  27. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.

    CAS  Google Scholar 

  28. Kabsch, W., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, vol. 66, p. 125.

    CAS  Google Scholar 

  29. Alvarez, S. and Llunell, M., Dalton Trans., 2000, vol. 19, p. 3288.

  30. Casanova, D., Llunell, M., Alemany, P., and Alvarez, S., Chem.-Eur. J., 2005, vol. 11, p. 1479.

    CAS  PubMed  Google Scholar 

  31. Chen Sheng-Chun, Zhang Zhi-Hui, Huang Kun-Lin, et al., CrystEngComm, 2013, vol. 15, p. 9613.

    CAS  Google Scholar 

  32. Nadzhafov, G.N., Shnulin, A.N., Mamedov, Kh.S., and Shil’nikov, V.I., Koord. Khim., 1982, vol. 8, p. 1276.

    CAS  Google Scholar 

  33. Glinskaya, L.A., Leonova, T.G., Klevtsova, R.F., and Larionov, S.V., J. Struct. Chem., 2010, vol. 51, p. 610.

    Google Scholar 

  34. Kalyakina, A.S., Utochnikova, V.V., Bushmarinov, I.S., et al., Chem.-Eur. J., 2015, vol. 21, p. 17921.

    CAS  PubMed  Google Scholar 

  35. Chi Yu-Xian, Niu Shu-Yun, Jing Jin, et al., Dalton Trans, 2009, no. 37, p. 7653.

  36. Wu Bin and Guo Yong-Sheng, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2004, vol. 60, p. m1261.

    Google Scholar 

  37. Kiraev, S.R., Nikolaevskii, S.A., Kiskin, M.A., et al., Inorg. Chim. Acta, 2018, vol. 477, p. 15.

    CAS  Google Scholar 

  38. Boyle, T.J., Raymond, R., Boye, D.M., et al., Dalton Trans., 2010, vol. 39, p. 8050.

    CAS  PubMed  Google Scholar 

  39. Gogoleva, N.V., Shmelev, M.A., Kiskin, M.A., et al., Russ.Chem. Bull., 2016, vol. 65, p. 1198.

    CAS  Google Scholar 

  40. Gogoleva, N.V., Shmelev, M.A., Evstifeev, I.S., et al., Izv. Akad. Nauk, Ser. Khim., 2016, no. 1, p. 181.

  41. Sato, Y., Ouchi, A., Yukawa, Y., and Takeuchi, T., Chem. Lett., 1982, p. 1495.

  42. Miklovic, J., Packova, A., Segla, P., et al., Inorg. Chim. Acta, 2015, vol. 429, p. 73.

    CAS  Google Scholar 

  43. Ivanikova, R., Boca, R., Dlhan, L., et al., Polyhedron, 2006, vol. 25, p. 3261.

    CAS  Google Scholar 

  44. Clegg, W. and Straughan, B.P., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1992, vol. 45, p. 1989.

    Google Scholar 

  45. Hudak, J., Boca, R., Moncol, J., and Titis, J., Inorg. Chim. Acta, 2013, vol. 394, p. 401.

    CAS  Google Scholar 

  46. Niedzielska, D., Pazderski, L., Wojtczak, A., et al., Polyhedron, 2018, vol. 139, p. 155.

    CAS  Google Scholar 

  47. Robertson, K.N., Bakshi, P.K., Lantos, S.D., et al., Can. J. Chem., 1998, vol. 76, p. 583.

    CAS  Google Scholar 

  48. Ha Kwang-Ho, Z. Kristallogr., 2012, vol. 227, p. 33.

    Google Scholar 

  49. Esteruelas, M.A., Fernandez-Alvarez, F.J., Olivan, M., and Onate, E., Organometallics, 2009, vol. 28, p. 2276.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The XRD analyses (complexes I and II), IR spectroscopy, and elemental analyses (of all complexes) were carried out on the equipment of the Center for Collective Use “Physical Methods of Investigation” at the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in terms of the state assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the area of basic research. The data on the structure of compound V were obtained on the X-ray beam of the Belok station of the Kurchatov Synchrotron Radiation Source at the Kurchatov Institute Russian Research Center.

Funding

Complexes I, III, and IV were synthesized and studied in terms of the Russian Science Foundation (project no. 16-13-10537), complexes V and VIIIX were synthesized and studied in terms of the state assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the area of basic research, and the synthesis and study of complex VI were supported by the Russian Foundation for Basic Research (project no. 18-29-04043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shmelev.

Additional information

The coauthors congratulate Academician I.L. Eremenko on his 70th jubilee

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmelev, M.A., Gogoleva, N.V., Kuznetsova, G.N. et al. Cd(II) and Cd(II)–Eu(III) Complexes with Pentafluorobenzoic Acid Anions and N-Donor Ligands: Synthesis and Structures. Russ J Coord Chem 46, 557–572 (2020). https://doi.org/10.1134/S1070328420080060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328420080060

Keywords:

Navigation