Skip to main content

Advertisement

Log in

Plant–archaea relationships: a potential means to improve crop production in arid and semi-arid regions

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Crop production in arid and semi-arid regions of the world is limited by several abiotic factors, including water stress, temperature extremes, low soil fertility, high soil pH, low soil water-holding capacity, and low soil organic matter. Moreover, arid and semi-arid areas experience low levels of rainfall with high spatial and temporal variability. Also, the indiscriminate use of chemicals, a practice that characterizes current agricultural practice, promotes crop and soil pollution potentially resulting in serious human health and environmental hazards. A reliable and sustainable alternative to current farming practice is, therefore, a necessity. One such option includes the use of plant growth-promoting microbes that can help to ameliorate some of the adverse effects of these multiple stresses. In this regard, archaea, functional components of the plant microbiome that are found both in the rhizosphere and the endosphere may contribute to the promotion of plant growth. Archaea can survive in extreme habitats such as areas with high temperatures and hypersaline water. No cases of archaea pathogenicity towards plants have been reported. Archaea appear to have the potential to promote plant growth, improve nutrient supply and protect plants against various abiotic stresses. A better understanding of recent developments in archaea functional diversity, plant colonizing ability, and modes of action could facilitate their eventual usage as reliable components of sustainable agricultural systems. The research discussed herein, therefore, addresses the potential role of archaea to improve sustainable crop production in arid and semi-arid areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S (2017) The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11:2407

    PubMed  PubMed Central  Google Scholar 

  • Ahmad N, Johri S, Sultan P, Abdin MZ, Qazi GN (2011) Phylogenetic characterization of archaea in saltpan sediments. Indian J Microbiol 51:132–137

    PubMed  PubMed Central  Google Scholar 

  • Aklujkar M et al (2014) Anaerobic degradation of aromatic amino acids by the hyperthermophilic archaeon Ferroglobus placidus. Microbiology 160:2694–2709

    PubMed  CAS  Google Scholar 

  • Alori ET (2015) Phytoremediation using microbial communities: II. In: Phytoremediation. Springer, Cham, pp 183–190

  • Alori ET, Dare MO, Babalola OO (2017) Microbial inoculants for soil quality and plant health. In: Sustainable agriculture reviews. Springer, Cham, pp 281–307

  • Angel R, Soares MIM, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553

    PubMed  Google Scholar 

  • Banning NC, Maccarone LD, Fisk LM, Murphy DV (2015) Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci Rep 5:11146

    PubMed  PubMed Central  Google Scholar 

  • Baymann F, Lebrun E, Brugna M, Schoepp-Cothenet B, Giudici-Orticoni MT, Nitschke W (2003) The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Philos Trans R Soc Lond B 358:267–274

    CAS  Google Scholar 

  • Buée M, De Boer W, Martin F, Van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Google Scholar 

  • Caforio A et al (2018) Converting Escherichia coli into an archaebacterium with a hybrid heterochiral membrane. Proc Natl Acad Sci USA 115:3704–3709

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cao TB, Saier MH Jr (2003) The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta 1609:115–125

    PubMed  CAS  Google Scholar 

  • Chelius M, Triplett E (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    PubMed  CAS  Google Scholar 

  • Dave B, Anshuman K, Hajela P (2006) Siderophores of halophilic archaea and their chemical characterization. Indian J Exp Biol 44:340–344

    PubMed  CAS  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621

    CAS  Google Scholar 

  • Dubey G, Kollah B, Gour VK, Shukla AK, Mohanty SR (2016) Diversity of bacteria and archaea in the rhizosphere of bioenergy crop Jatropha curcas. 3 Biotech 6:257

    PubMed  PubMed Central  Google Scholar 

  • Edgcomb VP et al (2007) Survival and growth of two heterotrophic hydrothermal vent archaea, Pyrococcus strain GB-D and Thermococcus fumicolans, under low pH and high sulfide concentrations in combination with high temperature and pressure regimes. Extremophiles 11:329–342

    PubMed  CAS  Google Scholar 

  • Fess TL, Benedito VA (2018) Organic versus conventional cropping sustainability: a comparative system analysis. Sustainability 10:272

    Google Scholar 

  • Forterre P (2015) The universal tree of life: an update. Front Microbiol 6:717

    PubMed  PubMed Central  Google Scholar 

  • Francis CA, Beman JM, Kuypers MM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19

    PubMed  CAS  Google Scholar 

  • Fröls S et al (2008) UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol 70:938–952

    PubMed  Google Scholar 

  • Gibson JA, Miller MR, Davies NW, Neill GP, Nichols DS, Volkman JK (2005) Unsaturated diether lipids in the psychrotrophic archaeon Halorubrum lacusprofundi. Syst Appl Microbiol 28:19–26

    PubMed  CAS  Google Scholar 

  • Gogarten JP et al (1989) Evolution of the vacuolar H+–ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661–6665

    PubMed  CAS  PubMed Central  Google Scholar 

  • Großkopf R, Stubner S, Liesack W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989

    PubMed Central  Google Scholar 

  • Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils . FEMS Microbiol Ecol 74:566–574. https://doi.org/10.1111/j.1574-6941.2010.00971.x

    Article  PubMed  CAS  Google Scholar 

  • Hai B et al (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 75:4993–5000

    PubMed  PubMed Central  CAS  Google Scholar 

  • He J-Z, Hu H-W, Zhang L-M (2012) Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biol Biochem 55:146–154

    CAS  Google Scholar 

  • He Y, Hu W, Ma D, Lan H, Yang Y, Gao Y (2017) Abundance and diversity of ammonia-oxidizing archaea and bacteria in the rhizosphere soil of three plants in the Ebinur Lake Wetland. Can J Microbiol 63:573–582

    PubMed  CAS  Google Scholar 

  • Huang M, Chai L, Jiang D, Zhang M, Zhao Y, Huang Y (2019) Increasing aridity affects soil archaeal communities by mediating soil niches in semi-arid regions. Sci Total Environ 647:699–707

    PubMed  CAS  Google Scholar 

  • Jain S, Caforio A, Driessen AJ (2014) Biosynthesis of archaeal membrane ether lipids. Front Microbiol 5:641

    PubMed  PubMed Central  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    PubMed  CAS  Google Scholar 

  • Jiao S, Xu Y, Zhang J, Lu Y (2019) Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome 7:1–13

    Google Scholar 

  • Jones WJ, Nagle D Jr, Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 51:135

    PubMed  PubMed Central  CAS  Google Scholar 

  • Karlsson AE, Johansson T, Bengtson P (2012) Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol Ecol 80:305–311

    PubMed  CAS  Google Scholar 

  • Kırtel O, Versluys M, Van den Ende W, Öner ET (2018) Fructans of the saline world. Biotechnol Adv 36:1524–1539

    PubMed  Google Scholar 

  • Kırtel O, Lescrinier E, Van den Ende W, Öner ET (2019) Discovery of fructans in Archaea. Carbohydr Polym 220:149–156

    PubMed  Google Scholar 

  • Knief C et al (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378

    CAS  PubMed  Google Scholar 

  • Koerdt A, Jachlewski S, Ghosh A, Wingender J, Siebers B, Albers S-V (2012) Complementation of Sulfolobus solfataricus PBL2025 with an α-mannosidase: effects on surface attachment and biofilm formation. Extremophiles 16:115–125

    PubMed  CAS  Google Scholar 

  • Koga Y (2012) Thermal adaptation of the archaeal and bacterial lipid membranes. Lipid Biol Archaea. https://doi.org/10.1155/2012/789652

    Article  Google Scholar 

  • Könneke M, Bernhard AE, José R, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543

    PubMed  Google Scholar 

  • Küper U, Meyer C, Müller V, Rachel R, Huber H (2010) Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis. Proc Natl Acad Sci USA 107:3152–3156

    PubMed  PubMed Central  Google Scholar 

  • Lee S-H, Kim S-Y, Ding W, Kang H (2015) Impact of elevated CO2 and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants. Appl Microbiol Biotechnol 99:5295–5305

    PubMed  CAS  Google Scholar 

  • Lee SY et al (2019) The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses. Front Plant Sci 10:750

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Curr Issues Mol Biol 2:125–131

    PubMed  CAS  Google Scholar 

  • Lin X, White RH (1987) Structure of sulfohalopterin 2 from Halobacterium marismortui. Biochemistry 26:6211–6217

    CAS  Google Scholar 

  • Liu Y, Li H, Liu QF, Li YH (2015) Archaeal communities associated with roots of the common reed (Phragmites australis) in Beijing Cuihu Wetland. World J Microbiol Biotechnol 31:823–832

    PubMed  Google Scholar 

  • Long X, Chen C, Xu Z, Oren R, He J-Z (2012) Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under ten-years elevated CO2. Soil Biol Biochem 46:163–171

    CAS  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76(21):6971–6981

    PubMed  PubMed Central  CAS  Google Scholar 

  • MacLeod F, Kindler GS, Wong HL, Chen R, Burns BP (2019) Asgard archaea: diversity, function, and evolutionary implications in a range of microbiomes. AIMS Microbiol 5:48

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mander L, Liu HW (2010) Comprehensive natural products II: chemistry and biology. In: V1: natural products structural diversity-I, secondary metabolites: organization and biosynthesis. V2: natural products structural diversity-II secondary metabolites: sources, structure and chemical biology. V3: development. Elsevier Ltd, Amsterdam, pp 1-7451

  • Mao Y, Yannarell AC, Mackie RI (2011) Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS ONE 6:e24750

    PubMed  PubMed Central  CAS  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    PubMed  Google Scholar 

  • McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531

    PubMed  CAS  Google Scholar 

  • McLain J (2004) Archaea. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Inc., New York, pp 88–94

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    PubMed  CAS  Google Scholar 

  • Moissl-Eichinger C, Huber H (2011) Archaeal symbionts and parasites. Curr Opin Microbiol 14:364–370

    PubMed  Google Scholar 

  • Moissl-Eichinger C, Rachel R, Briegel A, Engelhardt H, Huber R (2005) The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks. Mol Microbiol 56:361–370

    Google Scholar 

  • Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA (2018) Archaea are interactive components of complex microbiomes. Trends Microbiol 26:70–85

    PubMed  CAS  Google Scholar 

  • Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37:384–406

    PubMed  CAS  Google Scholar 

  • Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138

    PubMed  PubMed Central  Google Scholar 

  • Näther DJ, Rachel R, Wanner G, Wirth R (2006) Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell–cell contacts. J Bacteriol 188:6915–6923

    PubMed  PubMed Central  Google Scholar 

  • Navarrete AA, Taketani RG, Mendes LW, de Cannavan FS, de Moreira FMS, Tsai SM (2011) Land-use systems affect archaeal community structure and functional diversity in western Amazon soils. Rev Bras Ciênc Solo 35:1527–1540

    Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nishihara M, Yamazaki T, Oshima T, Koga Y (1999) sn-Glycerol-1-phosphate-forming activities in Archaea: separation of archaeal phospholipid biosynthesis and glycerol catabolism by glycerophosphate enantiomers. J Bacteriol 181:1330–1333

    PubMed  PubMed Central  CAS  Google Scholar 

  • Odelade KA, Babalola OO (2019) Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int J Environ Res Public Health 16:3873. https://doi.org/10.3390/ijerph16203873

    Article  PubMed Central  CAS  Google Scholar 

  • Oliveira MN et al (2013) Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can J Microbiol 59:221–230

    PubMed  CAS  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    PubMed  PubMed Central  Google Scholar 

  • Ortiz R et al (2000) Biotechnology in the semi-arid tropics. In: Assessment of Irrigation Options, Thematic Review IV prepared as input to the World Commission on Dams. International Crops Research Institute for the Semi-arid Tropics (ICRISAT), Hyderabad

  • Perras AK et al (2015) S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence. Front Microbiol 6:543

    PubMed  PubMed Central  Google Scholar 

  • Pires AC et al (2012) Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microbiol 78:5520–5528

    PubMed  PubMed Central  CAS  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    PubMed  CAS  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    PubMed  CAS  Google Scholar 

  • Prudence S, Worsley S, Balis L, Murrel C, Lehtovirta-Morley L, Hutchings M (2019) Root-associated archaea: investigating the niche occupied by ammonia oxidising archaea within the wheat root microbiome. Access Microbiol 1:(1):253

    Google Scholar 

  • Pump J, Pratscher J, Conrad R (2015) Colonization of rice roots with methanogenic archaea controls photosynthesis-derived methane emission. Environ Microbiol 17:2254–2260

    PubMed  CAS  Google Scholar 

  • Schauss K et al (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456

    PubMed  CAS  Google Scholar 

  • Simon HM, Jahn CE, Bergerud LT, Sliwinski MK, Weimer PJ, Willis DK, Goodman RM (2005) Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots. Appl Environ Microbiol 71:4751–4760

    PubMed  PubMed Central  CAS  Google Scholar 

  • Song GC, Im H, Jung J, Lee S, Jung MY, Rhee SK, Ryu CM (2019) Plant growth-promoting archaea trigger induced systemic resistance in Arabidopsis thaliana against Pectobacterium carotovorum and Pseudomonas syringae. Environ Microbiol 21:940–948

    PubMed  CAS  Google Scholar 

  • Sterngren AE, Hallin S, Bengtson P (2015) Archaeal ammonia oxidizers dominate in numbers, but bacteria drive gross nitrification in N-amended grassland soil. Front Microbiol 6:1350

    PubMed  PubMed Central  Google Scholar 

  • Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113

    PubMed  CAS  Google Scholar 

  • Straub CT et al (2018) Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 42:543–578

    PubMed  PubMed Central  CAS  Google Scholar 

  • Su M, Kleineidam K, Schloter M (2010) Influence of different litter quality on the abundance of genes involved in nitrification and denitrification after freezing and thawing of an arable soil. Biol Fertil Soils 46:537–541

    Google Scholar 

  • Taffner J, Erlacher A, Bragina A, Berg C, Moissl-Eichinger C, Berg G (2018) What is the role of Archaea in plants? New insights from the vegetation of alpine bogs. mSphere 3:00122–00118

    Google Scholar 

  • Taffner J, Cernava T, Erlacher A, Berg G (2019) Novel insights into plant-associated archaea and their functioning in arugula (Eruca sativa Mill.). J Adv Res 19:39–48

    PubMed  PubMed Central  CAS  Google Scholar 

  • Timonen S, Bomberg M (2009) Archaea in dry soil environments. Phytochem Rev 8:505–518

    CAS  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    PubMed  CAS  Google Scholar 

  • UN (2016) United Nations Decade: For Deserts and the Fight Against Desertification

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

    PubMed  CAS  Google Scholar 

  • Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587

    PubMed  CAS  Google Scholar 

  • White RH (1987) Indole-3-acetic acid and 2-(indol-3-ylmethyl) indol-3-yl acetic acid in the thermophilic archaebacterium Sulfolobus acidocaldarius. J Bacteriol 169:5859–5860

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson WA et al (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985

    PubMed  CAS  Google Scholar 

  • Wrede C, Dreier A, Kokoschka S, Hoppert M (2012) Archaea in symbioses. Archaea 2012:596846–596846

    PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Verma P, Kaushik R, Dhaliwal H, Saxena A (2017) Archaea endowed with plant growth promoting attributes. EC Microbiol 8:294–298

    Google Scholar 

  • Zhang L-M, Wang M, Prosser JI, Zheng Y-M, He J-Z (2009) Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 70:208–217

    CAS  Google Scholar 

  • Zheng L, Zhao X, Zhu G, Yang W, Xia C, Xu T (2017) Occurrence and abundance of ammonia-oxidizing archaea and bacteria from the surface to below the water table, in deep soil, and their contributions to nitrification. MicrobiologyOpen 6:e00488

    PubMed Central  Google Scholar 

Download references

Acknowledgements

North-West University granted ETA and OCE Post-doctoral support. BRG and OOB would like to thank the Natural Sciences and Engineering Research Council of Canada and National Research Foundation, South Africa for Grant (Unique Grant No: 123634), respectively, for funds that have supported research in their labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola Oluranti Babalola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alori, E.T., Emmanuel, O.C., Glick, B.R. et al. Plant–archaea relationships: a potential means to improve crop production in arid and semi-arid regions. World J Microbiol Biotechnol 36, 133 (2020). https://doi.org/10.1007/s11274-020-02910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02910-6

Keywords

Navigation