Skip to main content
Log in

Selective excitation of two-wave structure depending on crystal orientation under shock compression

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Single crystals subjected to shock compression exhibit responses with distinct two-wave structures for certain crystal orientations. However, little is known to date regarding how the shock response depends on crystal orientation, and especially why the two-wave structure depends on the crystal orientation. In this work, molecular dynamics simulations of shock compressions in copper single crystals are performed to investigate the orientation dependence of shock responses and the corresponding deformation mechanisms. Four copper single crystals with [001], [011], [012], and [123] crystal orientations along the depth direction are investigated. The [011], [012], and [123] crystal orientations of copper single crystals show distinct two-wave structures in their shock responses, while such a two-wave structure in the shock response is not seen for those orientations having a [001] crystal orientation. The potential causes are analyzed by considering the propagation velocities of both elastic and plastic waves. We develop a technique for identifying twin structures in face-centered cubic crystals and this technique can effectively identify the twin structure. The morphology of shock-induced defects (e.g., dislocations and twins) shows the significant dependence of crystal orientation and the mechanisms behind these are discussed in detail. Finally, the Johnson-Cook constitutive model describing dynamic deformations at high temperatures and high strain rates is used to analyze the relationships between the shock responses and microscopic defects. The predictions of the Johnson-Cook constitutive model are consistent with the results of the molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, D. Raabe, C. Klüber, and F. Roters, Acta Mater. 52, 2229 (2004).

    ADS  Google Scholar 

  2. N. P. Daphalapurkar, and K. T. Ramesh, J. Mech. Phys. Solids 60, 277 (2012).

    ADS  Google Scholar 

  3. Q. L. Xiong, Z. Li, and T. Kitamura, Sci. Rep. 7, 9218 (2017).

    ADS  Google Scholar 

  4. N. Jia, P. Eisenlohr, F. Roters, D. Raabe, and X. Zhao, Acta Mater. 60, 3415 (2012).

    ADS  Google Scholar 

  5. Q. Xiong, T. Kitamura, and Z. Li, J. Appl. Phys. 122, 135105 (2017).

    ADS  Google Scholar 

  6. V. V. Zhakhovskiĭ, S. V. Zybin, K. Nishihara, and S. I. Anisimov, Phys. Rev. Lett. 83, 1175 (1999).

    ADS  Google Scholar 

  7. T. C. Germann, B. L. Holian, P. S. Lomdahl, and R. Ravelo, Phys. Rev. Lett. 84, 5351 (2000).

    ADS  Google Scholar 

  8. M. A. Meyers, Dynamic Behavior of Materials (John Wiley & Sons, 1994), pp. 180–185.

  9. Q. Xiong, T. Kitamura, and Z. Li, Mater. Sci. Eng.-A 752, 115 (2019).

    Google Scholar 

  10. M. S. Schneider, B. Kad, D. H. Kalantar, B. A. Remington, E. Kenik, H. Jarmakani, and M. A. Meyers, Int. J. Impact Eng. 32, 473 (2005).

    Google Scholar 

  11. B. Pang, I. Jones, Y. Chiu, J. Millett, G. Whiteman, and N. Bourne, J. Phys.-Conf. Ser. 522, 012029 (2014).

    Google Scholar 

  12. F. Cao, I. J. Beyerlein, F. L. Addessio, B. H. Sencer, C. P. Trujillo, E. K. Cerreta, and G. T. Gray III, Acta Mater. 58, 549 (2010).

    ADS  Google Scholar 

  13. B. Pang, S. Case, I. P. Jones, J. C. F. Millett, G. Whiteman, Y. L. Chiu, and C. A. Bronkhorst, Acta Mater. 148, 482 (2018).

    ADS  Google Scholar 

  14. E. N. Hahn, S. J. Fensin, T. C. Germann, and G. T. Gray III, Acta Mater. 159, 241 (2018).

    ADS  Google Scholar 

  15. F. Wang, Y. Gao, T. Zhu, and J. Zhao, Nanoscale Res. Lett. 6, 291 (2011).

    ADS  Google Scholar 

  16. Z. P. Xu, and Q. S. Zheng, Sci. China-Phys. Mech. Astron. 61, 74601 (2018).

    Google Scholar 

  17. Q. Xiong, T. Kitamura, and Z. Li, J. Appl. Phys. 125, 194302 (2019).

    ADS  Google Scholar 

  18. A. Neogi, and N. Mitra, Sci. Rep. 7, 7337 (2017).

    ADS  Google Scholar 

  19. K. Kadau, T. C. Germann, P. S. Lomdahl, R. C. Albers, J. S. Wark, A. Higginbotham, and B. L. Holian, Phys. Rev. Lett. 98, 135701 (2007).

    ADS  Google Scholar 

  20. K. Wang, J. Chen, W. Zhu, W. Hu, and M. Xiang, Int. J. Plast. 96, 56 (2017).

    Google Scholar 

  21. C. H. Lu, E. N. Hahn, B. A. Remington, B. R. Maddox, E. M. Bringa and M. A. Meyers, Sci. Rep. 5, 15064 (2015).

    ADS  Google Scholar 

  22. G. Mogni, A. Higginbotham, K. Gaál-Nagy, N. Park, and J. S. Wark, Phys. Rev. B 89, 64104 (2014).

    ADS  Google Scholar 

  23. X. Ou, Mater. Sci. Tech. 33, 822 (2017).

    Google Scholar 

  24. B. L. Holian, and P. S. Lomdahl, Science 280, 2085 (1998).

    ADS  Google Scholar 

  25. P. S. Branicio, A. Nakano, R. K. Kalia, and P. Vashishta, Int. J. Plast. 51, 122 (2013).

    Google Scholar 

  26. B. Li, L. Wang, J. C. E, H. H. Ma, and S. N. Luo, J. Appl. Phys. 116, 213506 (2014).

    ADS  Google Scholar 

  27. F. Yuan, and X. Wu, Phys. Rev. B 86, 134108 (2012).

    ADS  Google Scholar 

  28. M. Xiang, Y. Liao, K. Wang, G. Lu, and J. Chen, Int. J. Plast. 103, 23 (2018).

    Google Scholar 

  29. D. Seif, G. Po, R. Crum, V. Gupta, and N. M. Ghoniem, J. Appl. Phys. 115, 054301 (2014).

    ADS  Google Scholar 

  30. Q. Xiong, T. Kitamura, and Z. Li, Mech. Mater. 138, 103167 (2019).

    Google Scholar 

  31. M. Xiang, J. Cui, Y. Yang, Y. Liao, K. Wang, Y. Chen, and J. Chen, Int. J. Plast. 97, 24 (2017).

    Google Scholar 

  32. F. P. Zhao, Q. An, B. Li, H. A. Wu, W. A. Goddard III, and S. N. Luo, J. Appl. Phys. 113, 063516 (2013).

    ADS  Google Scholar 

  33. J. F. Tang, J. C. Xiao, L. Deng, W. Li, X. M. Zhang, L. Wang, S. F. Xiao, H. Q. Deng, and W. Y. Hu, Phys. Chem. Chem. Phys. 20, 28039 (2018).

    Google Scholar 

  34. P. Wen, B. Demaske, S. R. Phillpot, D. E. Spearot, G. Tao, and S. Yuan, J. Appl. Phys. 125, 215903 (2019).

    ADS  Google Scholar 

  35. S. N. Luo, Q. An, T. C. Germann, and L. B. Han, J. Appl. Phys. 106, 013502 (2009).

    ADS  Google Scholar 

  36. G. Agarwal, and A. M. Dongare, Comput. Mater. Sci. 145, 68 (2018).

    Google Scholar 

  37. S. Rawat, M. Warrier, S. Chaturvedi, and V. M. Chavan, Model. Simul. Mater. Sci. Eng. 20, 015012 (2011).

    ADS  Google Scholar 

  38. Y. Liao, M. Xiang, X. Zeng, and J. Chen, Mech. Mater. 84, 12 (2015).

    ADS  Google Scholar 

  39. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    ADS  Google Scholar 

  40. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    ADS  Google Scholar 

  41. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B 63, 224106 (2001).

    ADS  Google Scholar 

  42. E. M. Bringa, J. U. Cazamias, P. Erhart, J. Stölken, N. Tanushev, B. D. Wirth, R. E. Rudd, and M. J. Caturla, J. Appl. Phys. 96, 3793 (2004).

    ADS  Google Scholar 

  43. E. M. Bringa, A. Caro, Y. Wang, M. Victoria, J. M. McNaney, B. A. Remington, R. F. Smith, B. R. Torralva, and H. van Swygenhoven, Science 309, 1838 (2005).

    ADS  Google Scholar 

  44. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    ADS  Google Scholar 

  45. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998).

    ADS  Google Scholar 

  46. D. Faken, and H. Jónsson, Comput. Mater. Sci. 2, 279 (1994).

    Google Scholar 

  47. A. Stukowski, V. V. Bulatov, and A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012).

    ADS  Google Scholar 

  48. D. Li, F. C. Wang, Z. Y. Yang, and Y. P. Zhao, Sci. China-Phys. Mech. Astron. 57, 2177 (2014).

    ADS  Google Scholar 

  49. A. P. Gerlich, L. Yue, P. F. Mendez, and H. Zhang, Acta Mater. 58, 2176 (2010).

    ADS  Google Scholar 

  50. V. Dupont, and T. C. Germann, Phys. Rev. B 86, 134111 (2012).

    ADS  Google Scholar 

  51. G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, J. Appl. Phys. 90, 136 (2001).

    ADS  Google Scholar 

  52. Q. L. Xiong, T. Kitamura, and Z. Li, J. Therm. Stresses 42, 1330 (2019).

    Google Scholar 

  53. B. Cao, E. M. Bringa, and M. A. Meyers, Metall. Mat. Trans. A 38, 2681 (2007).

    Google Scholar 

  54. B. Zuanetti, S. D. McGrane, C. A. Bolme, and V. Prakash, J. Appl. Phys. 123, 195104 (2018).

    ADS  Google Scholar 

  55. J. W. Taylor, J. Appl. Phys. 36, 3146 (1965).

    ADS  Google Scholar 

  56. F. P. Yuan, Sci. China-Phys. Mech. Astron. 60, 034611 (2017).

    ADS  Google Scholar 

  57. T. E. Arvidsson, Y. M. Gupta, and G. E. Duvall, J. Appl. Phys. 46, 4474 (1975).

    ADS  Google Scholar 

  58. R. Aghababaei, and S. P. Joshi, Acta Mater. 69, 326 (2014).

    ADS  Google Scholar 

  59. G. R. Johnson, and W. H. Cook, Eng. Fract. Mech. 21, 31 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiLin Xiong.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972165, and 11502085), the Japan Society for the Promotion of Science (Grant No. P18067), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2016YXMS097).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Q., Shimada, T., Kitamura, T. et al. Selective excitation of two-wave structure depending on crystal orientation under shock compression. Sci. China Phys. Mech. Astron. 63, 114611 (2020). https://doi.org/10.1007/s11433-020-1555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1555-y

PACS number(s):

Navigation