Skip to main content
Log in

Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We propose a simple quasi-continuous monolayer graphene structure and achieve a dynamically tunable triple plasmon-induced transparency (PIT) effect in the proposed structure. Additional analyses indicate that the proposed structure contains a self-constructed bright-dark-dark mode system. A uniform theoretical model is introduced to investigate the spectral response characteristics and slow light-effects in the proposed system, and the theoretical and the simulated results exhibit high consistency. In addition, the influences of the Fermi level and the carrier mobility of graphene on transmission spectra are discussed. It is found that each PIT window exhibits an independent dynamical adjustability owing to the quasi-continuity of the proposed structure. Finally, the slow-light effects are investigated based on the calculation of the group refractive index and phase shift. It is found that the structure displays excellent slow-light effects near the PIT windows with high-group indices, and the maximum group index of each PIT window exceeds 1000 when the carrier mobility of graphene increases to 3.5 m2 V−1 s−1. The proposed structure has potential to be used in multichannel filters, optical switches, modulators, and slow light devices. Additionally, the established theoretical model lays a theoretical basis for research on multimode coupling effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).

    ADS  Google Scholar 

  2. Z. Y. Li, Front. Phys. 7, 601 (2012).

    ADS  Google Scholar 

  3. C. H. Gan, H. S. Chu, and E. P. Li, Phys. Rev. B 85, 125431 (2012).

    ADS  Google Scholar 

  4. D. K. Gramotnev, and S. I. Bozhevolnyi, Nat. Photon. 4, 83 (2010).

    ADS  Google Scholar 

  5. H. Q. Wang, J. B. Yang, J. J. Zhang, J. Huang, W. J. Wu, D. B. Chen, and G. L. Xiao, Opt. Lett. 41, 1233 (2016).

    ADS  Google Scholar 

  6. J. S. Gómez-Díaz, and J. Perruisseau-Carrier, Opt. Express 21, 15490 (2013).

    ADS  Google Scholar 

  7. Z. Q. Chen, P. Li, S. Zhang, Y. Q. Chen, P. Liu, and H. G. Duan, Nanotechnology 30, 335201 (2019).

    Google Scholar 

  8. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Nat. Photon. 11, 543 (2017).

    Google Scholar 

  9. J. Guo, L. Y. Jiang, X. Y. Dai, and Y. J. Xiang, Opt. Express 24, 4740 (2016).

    ADS  Google Scholar 

  10. Z. H. He, J. L. Zhao, and H. Lu, Appl. Phys. Express 13, 012009 (2020).

    ADS  Google Scholar 

  11. M. Z. Zhao, H. Xu, C. X. Xiong, M. F. Zheng, B. H. Zhang, W. K. Xie, and H. J. Li, Appl. Phys. Express 11, 082002 (2018).

    ADS  Google Scholar 

  12. J. Homola, Chem. Rev. 108, 462 (2008).

    Google Scholar 

  13. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, Nat. Mater. 7, 442 (2008).

    ADS  Google Scholar 

  14. B. X. Ruan, Q. You, J. Q. Zhu, L. M. Wu, J. Guo, X. Y. Dai, and Y. J. Xiang, Opt. Express 26, 16884 (2018).

    ADS  Google Scholar 

  15. Z. H. He, W. W. Xue, W. Cui, C. J. Li, Z. X. Li, L. H. Pu, J. J. Feng, X. T. Xiao, X. Y. Wang, and A. G. Li, Nanomaterials 10, 687 (2020).

    Google Scholar 

  16. A. Vakil, and N. Engheta, Science 332, 1291 (2011).

    ADS  Google Scholar 

  17. Z. Fei, A. S. Rodin, G. O. Andreev, W. Z. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Nature 487, 82 (2012).

    ADS  Google Scholar 

  18. B. H. Zhang, H. J. Li, H. Xu, M. Z. Zhao, C. X. Xiong, C. Liu, and K. Wu, Opt. Express 27, 3598 (2019).

    ADS  Google Scholar 

  19. M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009).

    ADS  Google Scholar 

  20. W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, Opt. Express 21, 10475 (2013).

    ADS  Google Scholar 

  21. E. Gao, Z. Liu, H. Li, H. Xu, Z. Zhang, X. Zhang, X. Luo, and F. Zhou, Appl. Phys. Express 12, 126001 (2019).

    ADS  Google Scholar 

  22. X. Y. He, P. Q. Gao, and W. Z. Shi, Nanoscale 8, 10388 (2016).

    ADS  Google Scholar 

  23. Y. C. Fan, N. H. Shen, F. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, Adv. Opt. Mater. 7, 1800537 (2019).

    Google Scholar 

  24. Z. R. Zhang, Y. Long, P. Y. Ma, and H. Li, Nanotechnology 28, 475205 (2017).

    ADS  Google Scholar 

  25. C. Zeng, Y. D. Cui, and X. M. Liu, Opt. Express 23, 545 (2015).

    ADS  Google Scholar 

  26. X. L. Zhao, L. Zhu, C. Yuan, and J. Q. Yao, Opt. Lett. 41, 5470 (2016).

    ADS  Google Scholar 

  27. H. Xu, H. J. Li, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, C. X. Xiong, and B. H. Zhang, Appl. Phys. Express 11, 042003 (2018).

    ADS  Google Scholar 

  28. E. D. Gao, Z. M. Liu, H. J. Li, H. Xu, Z. B. Zhang, X. Luo, C. X. Xiong, C. Liu, B. H. Zhang, and F. Q. Zhou, Opt. Express 27, 13884 (2019).

    ADS  Google Scholar 

  29. L. Wang, W. Li, and X. Y. Jiang, Opt. Lett. 40, 2325 (2015).

    ADS  Google Scholar 

  30. H. Xu, H. J. Li, Z. H. He, Z. Q. Chen, M. F. Zheng, and M. Z. Zhao, Opt. Express 25, 20780 (2017).

    ADS  Google Scholar 

  31. H. Xu, M. Zhao, M. Zheng, C. Xiong, B. Zhang, Y. Peng, and H. Li, J. Phys. D-Appl. Phys. 52, 025104 (2019).

    ADS  Google Scholar 

  32. H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, Appl. Phys. Lett. 103, 203112 (2013).

    ADS  Google Scholar 

  33. X. Shi, D. Z. Han, Y. Y. Dai, Z. F. Yu, Y. Sun, H. Chen, X. H. Liu, and J. Zi, Opt. Express 21, 28438 (2013).

    ADS  Google Scholar 

  34. X. Han, T. Wang, X. M. Li, S. Y. Xiao, and Y. J. Zhu, Opt. Express 23, 31945 (2015).

    ADS  Google Scholar 

  35. X. L. Zhao, C. Yuan, L. Zhu, and J. Q. Yao, Nanoscale 8, 15273 (2016).

    Google Scholar 

  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

    Google Scholar 

  37. M. Z. Zhao, H. Xu, C. X. Xiong, B. H. Zhang, C. Liu, W. K. Xie, and H. J. Li, Results Phys. 15, 102796 (2019).

    Google Scholar 

  38. S. Balci, O. Balci, N. Kakenov, F. B. Atar, and C. Kocabas, Opt. Lett. 41, 1241 (2016).

    ADS  Google Scholar 

  39. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotech. 3, 206 (2008).

    Google Scholar 

  40. K. S. Yee, IEEE Trans. Antennas Propagat. 14, 302 (1966).

    ADS  Google Scholar 

  41. E. D. Denman, J. Math. Anal. Appl. 21, 242 (1968).

    Google Scholar 

  42. G. Cao, H. Li, S. Zhan, Z. He, Z. Guo, X. Xu, and H. Yang, Opt. Lett. 39, 216 (2014).

    ADS  Google Scholar 

  43. H. Q. Wang, J. B. Yang, W. J. Wu, J. Huang, J. J. Zhang, P. Yan, D. B. Chen, and G. L. Xiao, IEEE Photon. Technol. Lett. 28, 2467 (2016).

    ADS  Google Scholar 

  44. F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science 320, 206 (2008).

    ADS  Google Scholar 

  45. S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992).

    ADS  Google Scholar 

  46. T. F. Krauss, Nat. Photon. 2, 448 (2008).

    ADS  Google Scholar 

  47. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, Phys. Rev. B 80, 195415 (2009).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongJian Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 61275174), the Natural Science Foundation of Hunan Province (Grant No. 2019JJ50147), and the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2018zzts105).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Xu, H., Zhao, M. et al. Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure. Sci. China Phys. Mech. Astron. 64, 224211 (2021). https://doi.org/10.1007/s11433-020-1566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1566-0

PACS number(s)

Navigation