Skip to main content
Log in

Conformal Totally Symmetric Arbitrary Spin Fermionic Fields

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Conformal totally symmetric arbitrary spin fermionic fields propagating in the flat space-time of even dimension d ≥ 4 are investigated. A first-derivative metric-like formulation involving the Fang-Fronsdal kinetic operator for such fields is developed. A gauge invariant Lagrangian and the corresponding gauge transformations are obtained. The gauge symmetries of the Lagrangian are realized by using auxiliary fields and the Stückelberg fields. A realization of the conformal algebra symmetries on the space of conformal gauge fermionic fields is obtained. The on-shell degrees of freedom of the fermionic arbitrary spin conformal fields are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Alkalaev, “Mixed-symmetry massless gauge fields in AdS5,” Theor. Math. Phys. 149 (1), 1338–1348 (2006) [transl. from Teor. Mat. Fiz. 149 (1), 47–59 (2006)]; arXiv: hep-th/0501105.

    MATH  Google Scholar 

  2. K. Alkalaev, “FV-type action for AdS5 mixed-symmetry fields,” J. High Energy Phys. 2011 (03), 031 (2011); arXiv: 1011.6109 [hep-th].

    MathSciNet  MATH  Google Scholar 

  3. K. Alkalaev, “Massless hook field in AdSd+1 from the holographic perspective,” J. High Energy Phys. 2013 (01), 018 (2013); arXiv: 1210.0217 [hep-th].

    Google Scholar 

  4. K. Alkalaev, “Mixed-symmetry tensor conserved currents and AdS/CFT correspondence,” J. Phys. A: Math. Theor. 46 (21), 214007 (2013); arXiv: 1207.1079 [hep-th].

    MathSciNet  MATH  Google Scholar 

  5. K. Alkalaev and M. Grigoriev, “Unified BRST approach to (partially) massless and massive AdS fields of arbitrary symmetry type,” Nucl. Phys. B 853 (3), 663–687 (2011); arXiv: 1105.6111 [hep-th].

    MathSciNet  MATH  Google Scholar 

  6. K. B. Alkalaev, O. V. Shaynkman, and M. A. Vasiliev, “Frame-like formulation for free mixed-symmetry bosonic massless higher-spin fields in AdSd,” arXiv: hep-th/0601225.

  7. F. Bastianelli, R. Bonezzi, O. Corradini, and E. Latini, “Effective action for higher spin fields on (A)dS backgrounds,” J. High Energy Phys. 2012 (12), 113 (2012); arXiv: 1210.4649 [hep-th].

    MathSciNet  MATH  Google Scholar 

  8. C. Becchi, A. Rouet, and R. Stora, “Renormalization of gauge theories,” Ann. Phys. 98 (2), 287–321 (1976).

    MathSciNet  Google Scholar 

  9. X. Bekaert, “Singletons and their maximal symmetry algebras,” arXiv: 1111.4554 [math-ph].

  10. X. Bekaert and N. Boulanger, “Tensor gauge fields in arbitrary representations of GL(D, ℝ). Duality and Poincaré lemma,” Commun. Math. Phys. 245 (1), 27–67 (2004); arXiv: hep-th/0208058.

    MATH  Google Scholar 

  11. X. Bekaert and N. Boulanger, “Tensor gauge fields in arbitrary representations of GL(D, ℝ). II: Quadratic actions,” Commun. Math. Phys. 271 (3), 723–773 (2007); arXiv: hep-th/0606198.

    MathSciNet  MATH  Google Scholar 

  12. X. Bekaert, N. Boulanger, and S. Leclercq, “Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex,” J. Phys. A: Math. Theor. 43 (18), 185401 (2010); arXiv: 1002.0289 [hep-th].

    MathSciNet  MATH  Google Scholar 

  13. X. Bekaert and M. Grigoriev, “Manifestly conformal descriptions and higher symmetries of bosonic singletons,” SIGMA, Symmetry Integrability Geom. Methods Appl. 6, 038 (2010); arXiv: 0907.3195 [hep-th].

    MathSciNet  MATH  Google Scholar 

  14. X. Bekaert and M. Grigoriev, “Notes on the ambient approach to boundary values of AdS gauge fields,” J. Phys. A: Math. Theor. 46 (21), 214008 (2013); arXiv: 1207.3439 [hep-th].

    MathSciNet  MATH  Google Scholar 

  15. R. Bonezzi, E. Latini, and A. Waldron, “Gravity, two times, tractors, Weyl invariance, and six-dimensional quantum mechanics,” Phys. Rev. D 82 (6), 064037 (2010); arXiv: 1007.1724 [hep-th].

    Google Scholar 

  16. N. Boulanger, C. Iazeolla, and P. Sundell, “Unfolding mixed-symmetry fields in AdS and the BMV conjecture. I: General formalism,” J. High Energy Phys. 2009 (07), 013 (2009); arXiv: 0812.3615 [hep-th].

    MathSciNet  Google Scholar 

  17. N. Boulanger, C. Iazeolla, and P. Sundell, “Unfolding mixed-symmetry fields in AdS and the BMV conjecture. II: Oscillator realization,” J. High Energy Phys. 2009 (07), 014 (2009); arXiv: 0812.4438 [hep-th].

    MathSciNet  Google Scholar 

  18. N. Boulanger and M. Henneaux, “A derivation of Weyl gravity,” Ann. Phys. 10 (11–12), 935–964 (2001); arXiv: hep-th/0106065.

    MathSciNet  MATH  Google Scholar 

  19. N. Boulanger and E. D. Skvortsov, “Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime,” J. High Energy Phys. 2011 (09), 063 (2011); arXiv: 1107.5028 [hep-th].

    MathSciNet  MATH  Google Scholar 

  20. N. Boulanger, E. D. Skvortsov, and Yu. M. Zinoviev, “Gravitational cubic interactions for a simple mixedsymmetry gauge field in AdS and flat backgrounds,” J. Phys. A: Math. Theor. 44 (41), 415403 (2011); arXiv: 1107.1872 [hep-th].

    MATH  Google Scholar 

  21. I. L. Buchbinder, A. V. Galajinsky, and V. A. Krykhtin, “Quartet unconstrained formulation for massless higher spin fields,” Nucl. Phys. B 779 (3), 155–177 (2007); arXiv: hep-th/0702161.

    MathSciNet  MATH  Google Scholar 

  22. I. L. Buchbinder and V. A. Krykhtin, “Gauge invariant Lagrangian construction for massive bosonic higher spin fields in D dimensions,” Nucl. Phys. B 727 (3), 537–563 (2005); arXiv: hep-th/0505092.

    MathSciNet  MATH  Google Scholar 

  23. I. L. Buchbinder, V. A. Krykhtin, and P. M. Lavrov, “Gauge invariant Lagrangian formulation of higher spin massive bosonic field theory in AdS space,” Nucl. Phys. B 762 (3), 344–376 (2007); arXiv: hep-th/0608005.

    MathSciNet  MATH  Google Scholar 

  24. I. L. Buchbinder, V. Krykhtin, and A. Reshetnyak, “BRST approach to Lagrangian construction for fermionic higher spin fields in AdS space,” Nucl. Phys. B 787 (3), 211–240 (2007); arXiv: hep-th/0703049.

    MathSciNet  MATH  Google Scholar 

  25. I. L. Buchbinder and S. L. Lyahovich, “Canonical quantisation and local measure of R2 gravity,” Classical Quantum Gravity 4 (6), 1487–1501 (1987).

    MathSciNet  Google Scholar 

  26. I. L. Buchbinder and A. Reshetnyak, “General Lagrangian formulation for higher spin fields with arbitrary index symmetry. I: Bosonic fields,” Nucl. Phys. B 862 (1), 270–326 (2012); arXiv: 1110.5044 [hep-th].

    MathSciNet  MATH  Google Scholar 

  27. I. L. Buchbinder, T. V. Snegirev, and Yu. M. Zinoviev, “Cubic interaction vertex of higher-spin fields with external electromagnetic field,” Nucl. Phys. B 864 (3), 694–721 (2012); arXiv: 1204.2341 [hep-th].

    MathSciNet  MATH  Google Scholar 

  28. Č. Burdík and A. Reshetnyak, “On representations of Higher Spin symmetry algebras for mixed-symmetry HS fields on AdS-spaces. Lagrangian formulation,” J. Phys., Conf. Ser. 343, 012102 (2012); arXiv: 1111.5516 [hep-th].

    Google Scholar 

  29. A. Campoleoni and D. Francia, “Maxwell-like Lagrangians for higher spins,” J. High Energy Phys. 2013 (03), 168 (2013); arXiv: 1206.5877 [hep-th].

    MathSciNet  MATH  Google Scholar 

  30. A. Campoleoni, D. Francia, J. Mourad, and A. Sagnotti, “Unconstrained higher spins of mixed symmetry. II: Fermi fields,” Nucl. Phys. B 828 (3), 405–514 (2010); arXiv: 0904.4447 [hep-th].

    MathSciNet  MATH  Google Scholar 

  31. P. Dempster and M. Tsulaia, “On the structure of quartic vertices for massless higher spin fields on Minkowski background,” Nucl. Phys. B 865 (2), 353–375 (2012); arXiv: 1203.5597 [hep-th].

    MathSciNet  MATH  Google Scholar 

  32. S. Deser, E. Joung, and A. Waldron, “Gravitational- and self-coupling of partially massless spin 2,” Phys. Rev. D 86 (10), 104004 (2012); arXiv: 1208.1307 [hep-th].

    Google Scholar 

  33. V. K. Dobrev, “Invariant differential operators for non-compact Lie groups: Parabolic subalgebras,” Rev. Math. Phys. 20 (4), 407–449 (2008); arXiv: hep-th/0702152.

    MathSciNet  MATH  Google Scholar 

  34. V. K. Dobrev, “Conservation laws for SO(p,q),” arXiv: 1210.8067 [math-ph].

  35. V. K. Dobrev, “Invariant differential operators for non-compact Lie algebras parabolically related to conformal Lie algebras,” J. High Energy Phys. 2013 (02), 015 (2013); arXiv: 1208.0409 [hep-th].

    MathSciNet  MATH  Google Scholar 

  36. V. K. Dobrev and V. B. Petkova, “All positive energy unitary irreducible representations of extended conformal supersymmetry,” Phys. Lett. B 162 (1–3), 127–132 (1985).

    MathSciNet  Google Scholar 

  37. N. T. Evans, “Discrete series for the universal covering group of the 3 + 2 dimensional de Sitter group,” J. Math. Phys. 8 (2), 170–184 (1967).

    MATH  Google Scholar 

  38. J. Fang and C. Fronsdal, “Massless fields with half-integral spin,” Phys. Rev. D 18 (10), 3630–3633 (1978).

    Google Scholar 

  39. A. Fotopoulos, N. Irges, A. C. Petkou, and M. Tsulaia, “Higher spin gauge fields interacting with scalars: The Lagrangian cubic vertex,” J. High Energy Phys. 2007 (10), 021 (2007); arXiv: 0708.1399 [hep-th].

    MathSciNet  Google Scholar 

  40. A. Fotopoulos, K. L. Panigrahi, and M. Tsulaia, “Lagrangian formulation of higher spin theories on AdS space,” Phys. Rev. D 74 (8), 085029 (2006); arXiv: hep-th/0607248.

    MathSciNet  Google Scholar 

  41. A. Fotopoulos and M. Tsulaia, “On the tensionless limit of string theory, off-shell higher spin interaction vertices and BCFW recursion relations,” J. High Energy Phys. 2010 (11), 086 (2010); arXiv: 1009.0727 [hep-th].

    MathSciNet  MATH  Google Scholar 

  42. E. S. Fradkin and A. A. Tseytlin, “Conformal supergravity,” Phys. Rep. 119 (4–5), 233–362 (1985).

    MathSciNet  Google Scholar 

  43. E. S. Fradkin and M. A. Vasiliev, “On the gravitational interaction of massless higher-spin fields,” Phys. Lett. B 189 (1-2), 89–95 (1987).

    Google Scholar 

  44. D. Francia and A. Sagnotti, “Free geometric equations for higher spins,” Phys. Lett. B 543 (3–4), 303–310 (2002); arXiv: hep-th/0207002.

    MathSciNet  MATH  Google Scholar 

  45. D. Francia and A. Sagnotti, “Minimal local Lagrangians for higher-spin geometry,” Phys. Lett. B 624 (1–2), 93–104 (2005); arXiv: hep-th/0507144.

    MathSciNet  MATH  Google Scholar 

  46. M. Grigoriev, “Parent formulations, frame-like Lagrangians, and generalized auxiliary fields,” J. High Energy Phys. 2012 (12), 048 (2012); arXiv: 1204.1793 [hep-th].

    MathSciNet  MATH  Google Scholar 

  47. M. Grigoriev and A. Waldron, “Massive higher spins from BRST and tractors,” Nucl. Phys. B 853 (2), 291–326 (2011); arXiv: 1104.4994 [hep-th].

    MathSciNet  MATH  Google Scholar 

  48. M. Günaydin, D. Minic, and M. Zagermann, “4D doubleton conformal theories, CPT and IIB strings on AdS5 × S5,” Nucl. Phys. B 534 (1-2), 96–120 (1998); arXiv: hep-th/9806042.

    Google Scholar 

  49. K. Hallowell and A. Waldron, “Constant curvature algebras and higher spin action generating functions,” Nucl. Phys. B 724 (3), 453–486 (2005); arXiv: hep-th/0505255.

    MathSciNet  MATH  Google Scholar 

  50. M. Henneaux, G. Lucena Gómez, and R. Rahman, “Higher-spin fermionic gauge fields and their electromagnetic coupling,” J. High Energy Phys. 2012 (08), 093 (2012); arXiv: 1206.1048 [hep-th].

    MathSciNet  MATH  Google Scholar 

  51. E. Joung, L. Lopez, and M. Taronna, “On the cubic interactions of massive and partially-massless higher spins in (A)dS,” J. High Energy Phys. 2012 (07), 041 (2012); arXiv: 1203.6578 [hep-th].

    Google Scholar 

  52. E. Joung, L. Lopez, and M. Taronna, “Solving the Noether procedure for cubic interactions of higher spins in (A)dS,” J. Phys. A: Math. Theor. 46 (21), 214020 (2013); arXiv: 1207.5520 [hep-th].

    MathSciNet  MATH  Google Scholar 

  53. E. Joung and K. Mkrtchyan, “A note on higher-derivative actions for free higher-spin fields,” J. High Energy Phys. 2012 (11), 153 (2012); arXiv: 1209.4864 [hep-th].

    MathSciNet  MATH  Google Scholar 

  54. E. Joung and M. Taronna, “Cubic interactions of massless higher spins in (A)dS: Metric-like approach,” Nucl. Phys. B 861 (1), 145–174 (2012); arXiv: 1110.5918 [hep-th].

    MathSciNet  MATH  Google Scholar 

  55. S.-C. Lee and P. van Nieuwenhuizen, “Counting of states in higher-derivative field theories,” Phys. Rev. D 26 (4), 934–937 (1982).

    MathSciNet  Google Scholar 

  56. G. Mack, “All unitary ray representations of the conformal group SU(2, 2) with positive energy,” Commun. Math. Phys. 55 (1), 1–28 (1977).

    MathSciNet  MATH  Google Scholar 

  57. R. Manvelyan, K. Mkrtchyan, and W. Rühl, “A generating function for the cubic interactions of higher spin fields,” Phys. Lett. B 696 (4), 410–415 (2011); arXiv: 1009.1054 [hep-th].

    MathSciNet  MATH  Google Scholar 

  58. R. Manvelyan, R. Mkrtchyan, and W. Ruühl, “Radial reduction and cubic interaction for higher spins in (A)dS space,” Nucl. Phys. B 872 (2), 265–288 (2013); arXiv: 1210.7227 [hep-th].

    MathSciNet  MATH  Google Scholar 

  59. R. R. Metsaev, “Generating function for cubic interaction vertices of higher spin fields in any dimension,” Mod. Phys. Lett. A 8 (25), 2413–2426 (1993).

    MathSciNet  MATH  Google Scholar 

  60. R. R. Metsaev, “Massless mixed-symmetry bosonic free fields in d-dimensional anti-de Sitter space-time,” Phys. Lett. B 354 (1-2), 78–84 (1995).

    Google Scholar 

  61. R. R. Metsaev, “All conformal invariant representations of d-dimensional anti-de Sitter group,” Mod. Phys. Lett. A 10 (23), 1719–1731 (1995).

    MathSciNet  MATH  Google Scholar 

  62. R. R. Metsaev, “Cubic interaction vertices for massive and massless higher spin fields,” Nucl. Phys. B 759 (1-2), 147–201 (2006); arXiv: hep-th/0512342.

    MathSciNet  MATH  Google Scholar 

  63. R. R. Metsaev, “Gauge invariant formulation of massive totally symmetric fermionic fields in (A)dS space,” Phys. Lett. B 643 (3-4), 205–212 (2006); arXiv: hep-th/0609029.

    Google Scholar 

  64. R. R. Metsaev, “Gravitational and higher-derivative interactions of a massive spin 5/2 field in (A)dS space,” Phys. Rev. D 77 (2), 025032 (2008); arXiv: hep-th/0612279.

    Google Scholar 

  65. R. R. Metsaev, “Shadows, currents, and AdS fields,” Phys. Rev. D 78 (10), 106010 (2008); arXiv: 0805.3472 [hep-th].

    MathSciNet  Google Scholar 

  66. R. R. Metsaev, “Conformal self-dual fields,” J. Phys. A: Math. Theor. 43 (11), 115401 (2010); arXiv: 0812.2861 [hep-th].

    MathSciNet  MATH  Google Scholar 

  67. R. R. Metsaev, “Gauge invariant two-point vertices of shadow fields, AdS/CFT, and conformal fields,” Phys. Rev. D 81 (10), 106002 (2010); arXiv: 0907.4678 [hep-th].

    MathSciNet  Google Scholar 

  68. R. R. Metsaev, “Gauge invariant approach to low-spin anomalous conformal currents and shadow fields,” Phys. Rev. D 83 (10), 106004 (2011); arXiv: 1011.4261 [hep-th].

    Google Scholar 

  69. R. R. Metsaev, “Ordinary-derivative formulation of conformal low-spin fields,” J. High Energy Phys. 2012 (01), 064 (2012); arXiv: 0707.4437 [hep-th].

    MathSciNet  MATH  Google Scholar 

  70. R. R. Metsaev, “Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields,” J. High Energy Phys. 2012 (06), 062 (2012); arXiv: 0709.4392 [hep-th].

    MathSciNet  MATH  Google Scholar 

  71. R. R. Metsaev, “Cubic interaction vertices for fermionic and bosonic arbitrary spin fields,” Nucl. Phys. B 859 (1), 13–69 (2012); arXiv: 0712.3526 [hep-th].

    MathSciNet  MATH  Google Scholar 

  72. R. R. Metsaev, “Anomalous conformal currents, shadow fields, and massive AdS fields,” Phys. Rev. D 85 (12), 126011 (2012); arXiv: 1110.3749 [hep-th].

    Google Scholar 

  73. R. R. Metsaev, “BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields,” Phys. Lett. B 720 (1-3), 237–243 (2013); arXiv: 1205.3131 [hep-th].

    MathSciNet  MATH  Google Scholar 

  74. R. R. Metsaev, “The BRST-BV approach to conformal fields,” J. Phys. A: Math. Theor. 49 (17), 175401 (2016); arXiv: 1511.01836 [hep-th].

    MathSciNet  MATH  Google Scholar 

  75. P. Yu. Moshin and A. A. Reshetnyak, “BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields,” J. High Energy Phys. 2007 (10), 040 (2007); arXiv: 0707.0386 [hep-th].

    MathSciNet  Google Scholar 

  76. D. Polyakov, “Gravitational couplings of higher spins from string theory,” Int. J. Mod. Phys. A 25 (24), 4623–4640 (2010); arXiv: 1005.5512 [hep-th].

    MathSciNet  MATH  Google Scholar 

  77. D. Polyakov, “Higher spins and open strings: Quartic interactions,” Phys. Rev. D 83 (4), 046005 (2011); arXiv: 1011.0353 [hep-th].

    Google Scholar 

  78. A. Reshetnyak, “General Lagrangian formulation for higher spin fields with arbitrary index symmetry. 2: Fermionic fields,” Nucl. Phys. B 869 (3), 523–597 (2013); arXiv: 1211.1273 [hep-th].

    MathSciNet  MATH  Google Scholar 

  79. A. A. Reshetnyak, “Constrained BRST-BFV Lagrangian formulations for higher spin fields in Minkowski spaces,” J. High Energy Phys. 2018 (09), 104 (2018); arXiv: 1803.04678 [hep-th].

    MathSciNet  Google Scholar 

  80. A. Rod Gover, E. Latini, and A. Waldron, Poincaré-Einstein Holography for Forms via Conformal Geometry in the Bulk (Am. Math. Soc., Providence, RI, 2015), Mem. AMS 235 (1106); arXiv: 1205.3489 [math.DG].

    MATH  Google Scholar 

  81. A. Sagnotti and M. Taronna, “String lessons for higher-spin interactions,” Nucl. Phys. B 842 (3), 299–361 (2011); arXiv: 1006.5242 [hep-th].

    MathSciNet  MATH  Google Scholar 

  82. A. Sagnotti and M. Tsulaia, “On higher spins and the tensionless limit of string theory,” Nucl. Phys. B 682 (1–2), 83–116 (2004); arXiv: hep-th/0311257.

    MathSciNet  MATH  Google Scholar 

  83. A. Y. Segal, “Conformal higher spin theory,” Nucl. Phys. B 664 (1-2), 59–130 (2003); arXiv: hep-th/0207212.

    Google Scholar 

  84. O. V. Shaynkman, I. Yu. Tipunin, and M. A. Vasiliev, “Unfolded form of conformal equations in M dimensions and o(M + 2)-modules,” Rev. Math. Phys. 18 (8), 823–886 (2006); arXiv: hep-th/0401086.

    MathSciNet  MATH  Google Scholar 

  85. W. Siegel, “All free conformal representations in all dimensions,” Int. J. Mod. Phys. A 4 (8), 2015–2020 (1989).

    MathSciNet  Google Scholar 

  86. E. D. Skvortsov, “Mixed-symmetry massless fields in Minkowski space unfolded,” J. High Energy Phys. 2008 (07), 004 (2008); arXiv: 0801.2268 [hep-th].

    MathSciNet  Google Scholar 

  87. E. D. Skvortsov, “Gauge fields in (A)dSd within the unfolded approach: Algebraic aspects,” J. High Energy Phys. 2010 (01), 106 (2010); arXiv: 0910.3334 [hep-th].

    MATH  Google Scholar 

  88. E. D. Skvortsov and Yu. M. Zinoviev, “Frame-like actions for massless mixed-symmetry fields in Minkowski space. Fermions,” Nucl. Phys. B 843 (3), 559–569 (2011); arXiv: 1007.4944 [hep-th].

    MathSciNet  MATH  Google Scholar 

  89. A. A. Slavnov, “Ward identities in gauge theories,” Theor. Math. Phys. 10 (2), 99–104 (1972) [transl. from Teor. Mat. Fiz. 10 (2), 153–161 (1972)].

    Google Scholar 

  90. M. Taronna, “Higher-spin interactions: Four-point functions and beyond,” J. High Energy Phys. 2012 (04), 029 (2012); arXiv: 1107.5843 [hep-th].

    MathSciNet  MATH  Google Scholar 

  91. J. C. Taylor, “Ward identities and charge renormalization of the Yang-Mills field,” Nucl. Phys. B 33 (2), 436–444 (1971).

    MathSciNet  Google Scholar 

  92. I. V. Tyutin, “Gauge invariance in field theory and statistical physics in operator formalism,” arXiv: 0812.0580 [hep-th].

  93. M. A. Vasiliev, “Free massless fermionic fields of arbitrary spin in d-dimensional anti-de Sitter space,” Nucl. Phys. B 301 (1), 26–68 (1988).

    MathSciNet  Google Scholar 

  94. M. A. Vasiliev, “Bosonic conformal higher-spin fields of any symmetry,” Nucl. Phys. B 829 (1–2), 176–224 (2010); arXiv: 0909.5226 [hep-th].

    MathSciNet  MATH  Google Scholar 

  95. M. A. Vasiliev, “Cubic vertices for symmetric higher-spin gauge fields in (A)dSd,” Nucl. Phys. B 862 (2), 341–408 (2012); arXiv: 1108.5921 [hep-th].

    MATH  Google Scholar 

  96. Yu. M. Zinoviev, “On massive high spin particles in (A)dS,” arXiv: hep-th/0108192.

  97. Yu. M. Zinoviev, “First order formalism for massive mixed symmetry tensor fields in Minkowski and (A)dS spaces,” arXiv: hep-th/0306292.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 11-02-00685.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Metsaev.

Additional information

This article was submitted by the author simultaneously in Russian and English

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Vol. 309, pp. 218–234.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metsaev, R.R. Conformal Totally Symmetric Arbitrary Spin Fermionic Fields. Proc. Steklov Inst. Math. 309, 202–218 (2020). https://doi.org/10.1134/S0081543820030153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820030153

Navigation