Skip to main content
Log in

The Higher Covariant Derivative Regularization as a Tool for Revealing the Structure of Quantum Corrections in Supersymmetric Gauge Theories

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We discuss why the Slavnov higher covariant derivative regularization appeared to be an excellent instrument for investigating quantum corrections in supersymmetric gauge theories. For example, it allows demonstrating that the β-function in these theories is given by integrals of double total derivatives and to construct the Novikov-Shifman-Vainshtein-Zakharov (NSVZ) renormalization prescription in all loops. It was also used to derive the non-renormalization theorem for the triple gauge-ghost vertices. With the help of this theorem the exact NSVZ β-function was rewritten in a new form, which revealed its perturbative origin. Moreover, in the case of using the higher covariant derivative regularization, it is possible to construct a method for obtaining the β-function of N = 1 supersymmetric gauge theories, which simplifies the calculations to a great extent. This method is illustrated by an explicit two-loop calculation made in the general ξ-gauge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Abbott, “The background field method beyond one loop,” Nucl. Phys. B 185 (1), 189–203 (1981).

    Google Scholar 

  2. L. F. Abbott, “Introduction to the background field method,” Acta Phys. Polon. B 13 (1–2), 33–50 (1982).

    MathSciNet  Google Scholar 

  3. S. S. Aleshin, I. O. Goriachuk, A. L. Kataev, and K. V. Stepanyantz, “The NSVZ scheme for N = 1 SQED with Nf flavors, regularized by the dimensional reduction, in the three-loop approximation,” Phys. Lett. B 764, 222–227 (2017).

    MATH  Google Scholar 

  4. S. S. Aleshin, A. L. Kataev, and K. V. Stepanyantz, “Structure of three-loop contributions to the β-function of N = 1 supersymmetric QED with Nf flavors regularized by the dimensional reduction,” JETP Lett. 103 (2), 77–81 (2016) [repr. from Pis’ma Zh. Eksp. Teor. Fiz. 103 (2), 83–87 (2016)].

    Google Scholar 

  5. S. S. Aleshin, A. L. Kataev, and K. V. Stepanyantz, “The three-loop Adler D-function for N = 1 SQCD regularized by dimensional reduction,” J. High Energy Phys. 2019 (03), 196 (2019).

    MathSciNet  MATH  Google Scholar 

  6. S. S. Aleshin, A. E. Kazantsev, M. B. Skoptsov, and K. V. Stepanyantz, “One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization,” J. High Energy Phys. 2016 (05), 014 (2016).

    Google Scholar 

  7. J. F. Ashmore, “A method of gauge-invariant regularization,” Lett. Nuovo Cimento 4 (8), 289–290 (1972).

    Google Scholar 

  8. L. V. Avdeev, G. A. Chochia, and A. A. Vladimirov, “On the scope of supersymmetric dimensional regularization,” Phys. Lett. B 105 (4), 272–274 (1981).

    Google Scholar 

  9. L. V. Avdeev, D. I. Kazakov, and I. N. Kondrashuk, “Renormalizations in softly broken SUSY gauge theories,” Nucl. Phys. B 510 (1–2), 289–312 (1998).

    MathSciNet  MATH  Google Scholar 

  10. L. V. Avdeev and A. A. Vladimirov, “Dimensional regularization and supersymmetry,” Nucl. Phys. B 219 (1), 262–276 (1983).

    Google Scholar 

  11. W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, “Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories,” Phys. Rev. D 18 (11), 3998–4017 (1978).

    Google Scholar 

  12. C. Becchi, A. Rouet, and R. Stora, “Renormalization of the abelian Higgs-Kibble model,” Commun. Math. Phys. 42 (2), 127–162 (1975).

    MathSciNet  Google Scholar 

  13. C. G. Bollini and J. J. Giambiagi, “Dimensional renormalization: The number of dimensions as a regularizing parameter,” Nuovo Cimento B 12 (1), 20–26 (1972).

    Google Scholar 

  14. L. Brink, O. Lindgren, and B. E. W. Nilsson, “N = 4 Yang-Mills theory on the light cone,” Nucl. Phys. B 212 (3), 401–412 (1983).

    Google Scholar 

  15. I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity, or a Walk through Superspace (Inst. Phys., Bristol, 1998).

    MATH  Google Scholar 

  16. I. L. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, “On the D = 4, N = 2 non-renormalization theorem,” Phys. Lett. B 433 (3–4), 335–345 (1998).

    Google Scholar 

  17. I. L. Buchbinder, N. G. Pletnev, and K. V. Stepanyantz, “Manifestly N = 2 supersymmetric regularization for N = 2 supersymmetric field theories,” Phys. Lett. B 751, 434–441 (2015).

    Google Scholar 

  18. I. L. Buchbinder and K. V. Stepanyantz, “The higher derivative regularization and quantum corrections in N = 2 supersymmetric theories,” Nucl. Phys. B 883, 20–44 (2014).

    MathSciNet  MATH  Google Scholar 

  19. M. A. L. Capri, D. R. Granado, M. S. Guimaraes, I. F. Justo, L. Mihaila, S. P. Sorella, and D. Vercauteren, “Renormalization aspects of N = 1 super Yang-Mills theory in the Wess-Zumino gauge,” Eur. Phys. J. C 74 (4), 2844 (2014).

    Google Scholar 

  20. G. M. Cicuta and E. Montaldi, “Analytic renormalization via continuous space dimension,” Lett. Nuovo Cimento 4 (9), 329–332 (1972).

    Google Scholar 

  21. R. Delbourgo and V. B. Prasad, “Supersymmetry in the four-dimensional limit,” J. Phys. G 1 (4), 377–380 (1975).

    Google Scholar 

  22. B. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1965).

    MATH  Google Scholar 

  23. D. Dudal, H. Verschelde, and S. P. Sorella, “The anomalous dimension of the composite operator A2 in the Landau gauge,” Phys. Lett. B 555 (1-2), 126–131 (2003).

    MathSciNet  MATH  Google Scholar 

  24. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace,” Classical Quantum Gravity 1 (5), 469–498 (1984); “Corrigendum,” Classical Quantum Gravity 2 (1), 127 (1985).

    MathSciNet  Google Scholar 

  25. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Cambridge Univ. Press, Cambridge, 2001).

    MATH  Google Scholar 

  26. S. J. Gates Jr., M. T. Grisaru, M. Roček, and W. Siegel, Superspace: One Thousand and One Lessons in Supersymmetry (Benjamin/Cummings, Reading, MA, 1983), Front. Phys. 58.

    MATH  Google Scholar 

  27. I. O. Goriachuk, A. L. Kataev, and K. V. Stepanyantz, “A class of the NSVZ renormalization schemes for N = 1 SQED,” Phys. Lett. B 785, 561–566 (2018).

    MATH  Google Scholar 

  28. M. T. Grisaru and W. Siegel, “Supergraphity. II: Manifestly covariant rules and higher-loop finiteness,” Nucl. Phys. B 201 (2), 292–314 (1982); “Erratum,” Nucl. Phys. B 206 (3), 496–497 (1982).

    Google Scholar 

  29. R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila, and M. Steinhauser, “Four-loop β function and mass anomalous dimension in dimensional reduction,” J. High Energy Phys. 2006 (12), 024 (2006).

    MathSciNet  MATH  Google Scholar 

  30. J. Hisano and M. Shifman, “Exact results for soft supersymmetry-breaking parameters in supersymmetric gauge theories,” Phys. Rev. D 56 (9), 5475–5482 (1997).

    Google Scholar 

  31. P. S. Howe, K. S. Stelle, and P. K. Townsend, “Miraculous ultraviolet cancellations in supersymmetry made manifest,” Nucl. Phys. B 236 (1), 125–166 (1984).

    MathSciNet  Google Scholar 

  32. I. Jack and D. R. T. Jones, “The gaugino β-function,” Phys. Lett. B 415 (4), 383–389 (1997).

    Google Scholar 

  33. I. Jack, D. R. T. Jones, and C. G. North, “N = 1 supersymmetry and the three-loop gauge β-function,” Phys. Lett. B 386 (1–4), 138–140 (1996).

    Google Scholar 

  34. I. Jack, D. R. T. Jones, and C. G. North, “Scheme dependence and the NSVZ β-function,” Nucl. Phys. B 486 (1–2), 479–499 (1997).

    Google Scholar 

  35. I. Jack, D. R. T. Jones, and A. Pickering, “The connection between the DRED and NSVZ renormalisation schemes,” Phys. Lett. B 435 (1–2), 61–66 (1998).

    Google Scholar 

  36. D. R. T. Jones, “Asymptotic behaviour of supersymmetric Yang-Mills theories in the two-loop approximation,” Nucl. Phys. B 87 (1), 127–132 (1975).

    Google Scholar 

  37. D. R. T. Jones, “More on the axial anomaly in supersymmetric Yang-Mills theory,” Phys. Lett. B 123 (1–2), 45–46 (1983).

    MathSciNet  Google Scholar 

  38. J. W. Juer and D. Storey, “Nonlinear renormalisation in superfield gauge theories,” Phys. Lett. B 119 (1–3), 125–127 (1982).

    Google Scholar 

  39. J. W. Juer and D. Storey, “One-loop renormalisation of superfield Yang-Mills theories,” Nucl. Phys. B 216 (1), 185–208 (1983).

    Google Scholar 

  40. A. L. Kataev, A. E. Kazantsev, and K. V. Stepanyantz, “The Adler β-function for N = 1 SQCD regularized by higher covariant derivatives in the three-loop approximation,” Nucl. Phys. B 926, 295–320 (2018).

    MathSciNet  MATH  Google Scholar 

  41. A. L. Kataev, A. E. Kazantsev, and K. V. Stepanyantz, “On-shell renormalization scheme for N = 1 SQED and the NSVZ relation,” Eur. Phys. J. C 79 (6), 477 (2019).

    Google Scholar 

  42. A. L. Kataev and K. V. Stepanyantz, “NSVZ scheme with the higher derivative regularization for N = 1SQED,” Nucl. Phys. B 875 (2), 459–482 (2013).

    MATH  Google Scholar 

  43. A. L. Kataev and K. V. Stepanyantz, “Scheme independent consequence of the NSVZ relation for N = 1 SQED with Nf flavors,” Phys. Lett. B 730, 184–189 (2014).

    MATH  Google Scholar 

  44. A. L. Kataev and K. V. Stepanyantz, “The NSVZ β-function in supersymmetric theories with different regularizations and renormalization prescriptions,” Theor. Math. Phys. 181 (3), 1531–1540 (2014) [transl. from Teor. Mat. Fiz. 181 (3), 475–486 (2014)].

    MathSciNet  MATH  Google Scholar 

  45. A. E. Kazantsev, M. D. Kuzmichev, N. P. Meshcheriakov, S. V. Novgorodtsev, I. E. Shirokov, M. B. Skoptsov, and K. V. Stepanyantz, “Two-loop renormalization of the Faddeev-Popov ghosts in N = 1 supersymmetric gauge theories regularized by higher derivatives,” J. High Energy Phys. 2018 (06), 020 (2018).

    MathSciNet  MATH  Google Scholar 

  46. A. E. Kazantsev, V. Yu. Shakhmanov, and K. V. Stepanyantz, “New form of the exact NSVZ β-function: The three-loop verification for terms containing Yukawa couplings,” J. High Energy Phys. 2018 (04), 130 (2018).

    MathSciNet  MATH  Google Scholar 

  47. A. E. Kazantsev, M. B. Skoptsov, and K. V. Stepanyantz, “One-loop polarization operator of the quantum gauge superfield for N = 1 SYM regularized by higher derivatives,” Mod. Phys. Lett. A 32 (36), 1750194 (2017).

    MathSciNet  MATH  Google Scholar 

  48. A. E. Kazantsev and K. V. Stepanyantz, “Relation between two-point Green’s functions of N = 1 SQED with Nf flavors, regularized by higher derivatives, in the three-loop approximation,” J. Exp. Theor. Phys. 120 (4), 618–631 (2015) [transl. from Zh. Eksp. Teor. Fiz. 147 (4), 714–728 (2015)].

    Google Scholar 

  49. V. K. Krivoshchekov, “Invariant regularization for supersymmetric gauge theories,” Theor. Math. Phys. 36 (3), 745–752 (1978) [transl. from Teor. Mat. Fiz. 36 (3), 291–302 (1978)].

    MathSciNet  Google Scholar 

  50. M. D. Kuzmichev, N. P. Meshcheriakov, S. V. Novgorodtsev, I. E. Shirokov, and K. V. Stepanyantz, “Three-loop contribution of the Faddeev-Popov ghosts to the β-function of N = 1 supersymmetric gauge theories and the NSVZ relation,” Eur. Phys. J. C 79 (9), 809 (2019).

    Google Scholar 

  51. S. Mandelstam, “Light-cone superspace and the ultraviolet finiteness of the N = 4 model,” Nucl. Phys. B 213 (1), 149–168 (1983).

    MathSciNet  Google Scholar 

  52. L. Mihaila, “Precision calculations in supersymmetric theories,” Adv. High Energy Phys. 2013, 607807 (2013).

    MathSciNet  MATH  Google Scholar 

  53. R. N. Mohapatra, Unification and Supersymmetry: The Frontiers of Quark-Lepton Physics (Springer, New York, 2003).

    Google Scholar 

  54. I. V. Nartsev and K. V. Stepanyantz, “Exact renormalization of the photino mass in softly broken N = 1 SQED with Nf flavors regularized by higher derivatives,” J. High Energy Phys. 2017 (04), 047 (2017).

    MATH  Google Scholar 

  55. I. V. Nartsev and K. V. Stepanyantz, “NSVZ-like scheme for the photino mass in softly broken N = 1 SQED regularized by higher derivatives,” JETP Lett. 105 (2), 69–73 (2017) [transl. from Pis’ma Zh. Eksp. Teor. Fiz. 105 (2), 57–61 (2017)].

    MATH  Google Scholar 

  56. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Exact Gell-Mann-Low function of supersymmetric Yang-Mills theories from instanton calculus,” Nucl. Phys. B 229 (2), 381–393 (1983).

    Google Scholar 

  57. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “The beta function in supersymmetric gauge theories. Instantons versus traditional approach,” Phys. Lett. B 166 (3), 329–333 (1986).

    Google Scholar 

  58. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (CRC Press, Boca Raton, FL, 2018).

    Google Scholar 

  59. O. Piguet and K. Sibold, “Renormalization of N = 1 supersymmetric Yang-Mills theories. I: The classical theory,” Nucl. Phys. B 197 (2), 257–271 (1982).

    Google Scholar 

  60. O. Piguet and K. Sibold, “Renormalization of N = 1 supersymmetric Yang-Mills theories. II: The radiative corrections,” Nucl. Phys. B 197 (2), 272–289 (1982).

    Google Scholar 

  61. A. B. Pimenov, E. S. Shevtsova, and K. V. Stepanyantz, “Calculation of two-loop β-function for general N = 1 supersymmetric Yang-Mills theory with the higher covariant derivative regularization,” Phys. Lett. B 686 (4–5), 293–297 (2010).

    MathSciNet  Google Scholar 

  62. V. Yu. Shakhmanov and K. V. Stepanyantz, “Three-loop NSVZ relation for terms quartic in the Yukawa couplings with the higher covariant derivative regularization,” Nucl. Phys. B 920, 345–367 (2017).

    MathSciNet  MATH  Google Scholar 

  63. V. Yu. Shakhmanov and K. V. Stepanyantz, “New form of the NSVZ relation at the two-loop level,” Phys. Lett. B 776, 417–423 (2018).

    MathSciNet  MATH  Google Scholar 

  64. M. Shifman and K. Stepanyantz, “Exact Adler function in supersymmetric QCD,” Phys. Rev. Lett. 114 (5), 051601 (2015).

    Google Scholar 

  65. M. A. Shifman and K. V. Stepanyantz, “Derivation of the exact expression for the D function in N = 1 SQCD,” Phys. Rev. D 91 (10), 105008 (2015).

    MathSciNet  Google Scholar 

  66. M. A. Shifman and A. I. Vainshtein, “Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion,” Nucl. Phys. B 277, 456–486 (1986).

    Google Scholar 

  67. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “An exact relation for the Gell-Mann-Low function in supersymmetric electrodynamics,” Phys. Lett. B 166 (3), 334–336 (1986).

    Google Scholar 

  68. W. Siegel, “Supersymmetric dimensional regularization via dimensional reduction,” Phys. Lett. B 84 (2), 193–196 (1979).

    MathSciNet  Google Scholar 

  69. W. Siegel, “Inconsistency of supersymmetric dimensional regularization,” Phys. Lett. B 94 (1), 37–40 (1980).

    MathSciNet  Google Scholar 

  70. A. A. Slavnov, “Invariant regularization of non-linear chiral theories,” Nucl. Phys. B 31 (2), 301–315 (1971).

    MathSciNet  Google Scholar 

  71. A. A. Slavnov, “Ward identities in gauge theories,” Theor. Math. Phys. 10 (2), 99–104 (1972) [transl. from Teor. Mat. Fiz. 10 (2), 153–161 (1972)].

    Google Scholar 

  72. A. A. Slavnov, “Invariant regularization of gauge theories,” Theor. Math. Phys. 13 (2), 1064–1066 (1972) [transl. from Teor. Mat. Fiz. 13 (2), 174–177 (1972)].

    Google Scholar 

  73. A. A. Slavnov, “Pauli-Villars regularization for non-Abelian gauge theories,” Theor. Math. Phys. 33 (2), 977–981 (1977) [transl. from Teor. Mat. Fiz. 33 (2), 210–217 (1977)].

    Google Scholar 

  74. A. A. Slavnov, “Universal gauge invariant renormalization,” Phys. Lett. B 518 (1-2), 195–200 (2001).

    MATH  Google Scholar 

  75. A. A. Slavnov, “Regularization-independent gauge-invariant renormalization of the Yang-Mills theory,” Theor. Math. Phys. 130 (1), 1–10 (2002) [transl. from Teor. Mat. Fiz. 130 (1), 3–14 (2002)].

    MATH  Google Scholar 

  76. A. A. Slavnov and L. D. Faddeev, Introduction to Quantum Theory of Gauge Fields (Nauka, Moscow, 1988). Engl. transl.: L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory (Addison-Wesley, Redwood City, CA, 1991), Front. Phys. 83.

    MATH  Google Scholar 

  77. A. A. Slavnov and K. V. Stepanyantz, “Universal invariant renormalization for supersymmetric theories,” Theor. Math. Phys. 135 (2), 673–684 (2003) [transl. from Teor. Mat. Fiz. 135 (2), 265–279 (2003)].

    MATH  Google Scholar 

  78. A. A. Slavnov and K. V. Stepanyantz, “Universal invariant renormalization for the supersymmetric Yang-Mills theory,” Theor. Math. Phys. 139 (2), 599–608 (2004) [transl. from Teor. Mat. Fiz. 139 (2), 179–191 (2004)].

    MATH  Google Scholar 

  79. A. Smilga and A. Vainshtein, “Background field calculations and nonrenormalization theorems in 4d supersymmetric gauge theories and their low-dimensional descendants,” Nucl. Phys. B 704 (3), 445–474 (2005).

    MathSciNet  MATH  Google Scholar 

  80. A. A. Soloshenko and K. V. Stepanyantz, “Three-loop β-function of N = 1 supersymmetric electrodynamics regularized by higher derivatives,” Theor. Math. Phys. 140 (3), 1264–1282 (2004) [transl. from Teor. Mat. Fiz. 140 (3), 437–459 (2004)].

    MATH  Google Scholar 

  81. K. V. Stepanyantz, “Derivation of the exact NSVZ β-function in N = 1 SQED, regularized by higher derivatives, by direct summation of Feynman diagrams,” Nucl. Phys. B 852 (1), 71–107 (2011).

    MathSciNet  MATH  Google Scholar 

  82. K. V. Stepanyantz, “Higher covariant derivative regularization for calculations in supersymmetric theories,” Proc. Steklov Inst. Math. 272, 256–265 (2011) [transl. from Tr. Mat. Inst. Steklova 272, 266–276 (2011)].

    MathSciNet  Google Scholar 

  83. K. V. Stepanyantz, “Quantum corrections in N = 1 supersymmetric theories with cubic superpotential, regularized by higher covariant derivatives,” Phys. Part. Nucl. Lett. 8, 321–324 (2011).

    Google Scholar 

  84. K. V. Stepanyantz, “Factorization of integrals defining the two-loop β-function for the general renormalizable N = 1 SYM theory, regularized by the higher covariant derivatives, into integrals of double total derivatives,” arXiv: 1108.1491 [hep-th].

  85. K. V. Stepanyantz, “The NSVZ β-function and the Schwinger-Dyson equations for N = 1 SQED with Nf flavors, regularized by higher derivatives,” J. High Energy Phys. 2014 (08), 096 (2014).

    Google Scholar 

  86. K. V. Stepanyantz, “Non-renormalization of the \(V\overline c c\) in N = 1 supersymmetric theories,” Nucl. Phys. B 909, 316–335 (2016).

    MathSciNet  MATH  Google Scholar 

  87. K. V. Stepanyantz, “Structure of quantum corrections in N = 1 supersymmetric gauge theories,” in What Comes beyond the Standard Models: Proc. 20th Workshop, Bled, 2017 (DMFA, Ljubljana, 2017), Bled Workshops Phys. 18 (2), pp. 197–213.

    Google Scholar 

  88. K. V. Stepanyantz, “The β-function of N = 1 supersymmetric gauge theories regularized by higher covariant derivatives as an integral of double total derivatives,” J. High Energy Phys. 2019 (10), 011 (2019).

    MathSciNet  Google Scholar 

  89. J. C. Taylor, “Ward identities and charge renormalization of the Yang-Mills field,” Nucl. Phys. B 33 (2), 436–444 (1971).

    MathSciNet  Google Scholar 

  90. G. ’t Hooft and M. Veltman, “Regularization and renormalization of gauge fields,” Nucl. Phys. B 44 (1), 189–213 (1972).

    MathSciNet  Google Scholar 

  91. I. V. Tyutin, “Renormalization of supergauge theories with unextended supersymmetry,” Sov. J. Nucl. Phys. 37, 453–458 (1983) [transl. from Yad. Fiz. 37 (3), 761–771 (1983)].

    MathSciNet  MATH  Google Scholar 

  92. I. V. Tyutin, “Gauge invariance in field theory and statistical physics in operator formalism,” arXiv: 0812.0580 [hep-th].

  93. A. I. Vaínshteín and M. A. Shifman, “Solution of the problem of anomalies in supersymmetric gauge theories, and the operator expansion,” Sov. Phys. JETP 64 (3), 428–440 (1986) [transl. from Zh. Eksp. Teor. Fiz. 91 (3), 723–744 (1986)].

    MathSciNet  Google Scholar 

  94. A. I. Vaínshteín, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, “The Gell-Mann-Low function in supersymmetric gauge theories. Instantons versus the traditional approach,” Sov. J. Nucl. Phys. 43 (2), 294–296 (1986) [transl. from Yad. Fiz. 43 (2), 459–464 (1986)].

    Google Scholar 

  95. A. I. Vaĭnshteĭn, V. I. Zakharov, and M. A. Shifman, “Gell-Mann-Low function in supersymmetric electrodynamics,” JETP Lett. 42 (4), 224–227 (1985) [transl. from Pis’ma Zh. Eksp. Teor. Fiz. 42 (4), 182–184 (1985)].

    Google Scholar 

  96. P. West, “Higher derivative regulation of supersymmetric theories,” Nucl. Phys. B 268 (1), 113–124 (1986).

    MathSciNet  Google Scholar 

  97. P. West, Introduction to Supersymmetry and Supergravity (World Scientific, Singapore, 1990).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS,” project no. 19-1-1-45-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Stepanyantz.

Additional information

Dedicated to Professor A. A. Slavnov on the occasion of his 80th birthday

This article was submitted by the author simultaneously in Russian and English

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Vol. 309, pp. 304–319.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanyantz, K.V. The Higher Covariant Derivative Regularization as a Tool for Revealing the Structure of Quantum Corrections in Supersymmetric Gauge Theories. Proc. Steklov Inst. Math. 309, 284–298 (2020). https://doi.org/10.1134/S0081543820030219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820030219

Navigation