Skip to main content
Log in

Derivation and analysis of computational methods for fractional Laplacian equations with absorbing layers

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is devoted to the derivation and analysis of accurate and efficient perfectly matched layers (PMLs) or efficient absorbing layers for solving fractional Laplacian equations within initial boundary value problems (IBVP). Two main approaches are derived: we first propose a Fourier-based pseudospectral method, and then present a real space method based on an efficient computation of the fractional Laplacian with PML. Some numerical experiments and analytical results are proposed along the paper to illustrate the presented methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for the two-dimensional schrödinger equation with an exterior potential Part i: Construction and a priori estimates. Math. Models Methods Appl. Sci. 22(10), 1250026,38 (2012)

    Article  Google Scholar 

  2. Antoine, X., Besse, C., Rispoli, V.: High-order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrö,dinger/Gross–Pitaevskii equations. J. Comput. Phys. 327, 252–269 (2016)

    Article  MathSciNet  Google Scholar 

  3. Antoine, X., Duboscq, R.: Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting bose-Einstein condensates. J. Comput. Phys. 258, 509–523 (2014)

    Article  MathSciNet  Google Scholar 

  4. Antoine, X., Geuzaine, C., Tang, Q.: Coupling spectral methods and perfectly matched layer for simulating the dynamics of nonlinear schrödinger equations. Application to rotating Bose-Einstein condensates Submitted (2019)

  5. Antoine, X., Lorin, E.: Computational performance of simple and efficient sequential and parallel Dirac equation solvers. Comput. Phys. Commun. 220, 150–172 (2017)

    Article  MathSciNet  Google Scholar 

  6. Antoine, X.: E. Lorin. Double-preconditioning for fractional linear systems Application to fractional Poisson equations Submitted (2019)

  7. Antoine, X., Lorin, E.: ODE-Based double-preconditioning for solving linear systems Aαx = b and f(A)x = b Submitted (2019)

  8. Antoine, X., Lorin, E.: Towards perfectly matched layers for time-dependent space fractional PDEs. J Comput. Phys. 391, 59–90 (2019)

    Article  MathSciNet  Google Scholar 

  9. Antoine, X., Lorin, E., Tang, Q.: A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations. Mol. Phys. 115(15-16), 1861–1879 (2017)

    Article  Google Scholar 

  10. Bao, W., Cai, Y.: Mathematical theory and numerical methods for bose-Einstein condensation. Kinetic and Related Models 6(1), 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  11. Bardos, C., Tadmor, E.: Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the 2/3 de-aliasing method. Numer. Math. 129(4), 749–782 (2015)

    Article  MathSciNet  Google Scholar 

  12. Bérenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  13. Bérenger, J.-P.: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127(2), 363–379 (1996)

    Article  MathSciNet  Google Scholar 

  14. Bermúdez, A., Hervella-Nieto, L., Prieto, A., Rodríguez, R.: An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J Comput. Phys. 223(2), 469–488 (2007)

    Article  MathSciNet  Google Scholar 

  15. Bermúdez, A., Hervella-Nieto, L., Prieto, A., Rodríguez, R.: An exact bounded perfectly matched layer for time-harmonic scattering problems. SIAM J. Sci. Comput. 30(1), 312–338 (2007/08)

    Article  MathSciNet  Google Scholar 

  16. Chandru, M., Das, P., Ramos, H.: Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. Mathematical Methods in the Applied Sciences 41(14), 5359–5387 (2018)

    Article  MathSciNet  Google Scholar 

  17. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 66(4), 7 (2002)

    Google Scholar 

  18. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Fractional diffusion in inhomogeneous media. Journal of Physics A: Mathematical and General 38(42), L679–L684 (2005)

    Article  MathSciNet  Google Scholar 

  19. Collino, F., Monk, P.: The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19(6), 2061–2090 (1998)

    Article  MathSciNet  Google Scholar 

  20. Colonius, T.: Modeling artificial boundary conditions for compressible flow. In: Annual Review of Fluid Mechanics., Volume 36 of Annu. Rev. Fluid Mech., pp. 315–345 (2004)

  21. Das, P.: A higher order difference method for singularly perturbed parabolic partial differential equations. J. Difference Equ. Appl. 24(3), 452–477 (2018)

    Article  MathSciNet  Google Scholar 

  22. Das, P., Mehrmann, V.: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. BIT 56(1), 51–76 (2016)

    Article  MathSciNet  Google Scholar 

  23. Das, P., Rana, S., Ramos, H.: A perturbation-based approach for solving fractional-order volterra-Fredholm integrodifferential equations and its convergence analysis. International Journal of Computer Mathematics (2019)

  24. Das, P., Rana, S., Vigo-Aguiar, J.: Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature. Appl. Numer Math. 148, 79–97 (2020)

    Article  MathSciNet  Google Scholar 

  25. Davies, P.I., Higham, N.J.: Computing f(A)b for matrix functions F. In: QCD and Numerical Analysis III, volume 47 of Lect. Notes Comput. Sci. Eng., pp 15–24. Springer, Berlin (2005)

  26. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  27. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Thermo-viscoelastic materials with fractional relaxation operators. Appl. Model. 39(23-24), 7499–7512 (2015)

    Article  MathSciNet  Google Scholar 

  28. Goodman, J., Hou, T., Tadmor, E.: On the stability of the unsmoothed Fourier method for hyperbolic equations. Numer. Math. 67(1), 93–129 (1994)

    Article  MathSciNet  Google Scholar 

  29. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dynamics 29 (1-4), 129–143 (2002)

    Article  MathSciNet  Google Scholar 

  30. Hale, N., Higham, N.J., Trefethen, L.N.: Computing \(\textbf {A}^{{\alpha }},\log (\textbf {A})\), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46(5), 2505–2523 (2008)

    Article  MathSciNet  Google Scholar 

  31. Higham, N.J.: Evaluating padé approximants of the matrix logarithm. SIAM J. Matrix Anal. Appl. 22(4), 1126–1135 (2001)

    Article  MathSciNet  Google Scholar 

  32. Hu, F.Q.: On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J. Comput. Phys. 129(1), 201–219 (1996)

    Article  MathSciNet  Google Scholar 

  33. Hu, F.Q.: A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables. J. Comput. Phys. 173(2), 455–480 (2001)

    Article  MathSciNet  Google Scholar 

  34. Li, X., Xu, C. : Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun Comput. Phys. 8(5), 1016–1051 (2010)

    Article  MathSciNet  Google Scholar 

  35. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M., Ainsworth, M., Karniadakis, G.E.: What is the fractional laplacian? a comparative review with new results. J. Comput. Phys. 404, 109009 (2020)

    Article  MathSciNet  Google Scholar 

  36. Saad, Y., Schultz. M.H.: GMRES - A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sc. Stat. Comput. 7 (3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  37. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A:, Statistical Mechanics and its Applications 284(1), 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  38. Shen, J., Tang, T., Wang, L.-L.: Spectral methods, volume 41 of Springer Series in Computational Mathematics. Springer, Heidelberg (2011). Algorithms, analysis and applications

    Google Scholar 

  39. Taylor, M.E.: Partial differential equations I. Basic theory, volume 115 of Applied Mathematical Sciences, 2nd Edn. Springer, New York (2011)

    Book  Google Scholar 

  40. Treeby, B.E., Jaros, J., Rendell, A.P., Cox, B.T.: Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. Journal of the Acoustical Society of America 131(6), 4324–4336 (2012)

    Article  Google Scholar 

  41. Treeby, B.E., Jaros, J., Rohrbach, D., Cox, B.T.: Modelling elastic wave propagation using the k-wave matlab toolbox. IEEE International Ultrasonics Symposium, IUS, pp. 146–149 (2014)

  42. Tsynkov, S.V.: Numerical solution of problems on unbounded domains. A review. Appl. Numer. Math. 27(4), 465–532 (1998). Absorbing boundary conditions

    Article  MathSciNet  Google Scholar 

  43. Turkel, E., Yefet, A.: Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27(4), 533–557 (1998). Absorbing boundary conditions

    Article  MathSciNet  Google Scholar 

  44. Veeresha, P., Baskonus, H.M., Prakasha, D.G., Gao, W., Yel, G.: Regarding new numerical solution of fractional schistosomiasis disease arising in biological phenomena. Chaos Solitons and Fractals 133 (2020)

Download references

Acknowledgments

X. Antoine acknowledges the support from the Inria associate team BEC2HPC (Bose-Einstein Condensates: Computation and HPC simulation). This work was partially done while the authors were visiting the Institute for Mathematical Sciences in 2019, National University of Singapore.

Funding

X. Antoine was supported by the ANR project NABUCO, ANR-17-CE40-0025, and the LIAFSMA (Université de Lorraine). E. Lorin thanks NSERC through the Discovery Grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lorin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Padé approximant-based PML

In the following, we detail the procedure for deriving PMLs by using Padé’s approximants with α = p/2k, \(k \in {\mathbb {N}}^{*}\) and \(p\in {\mathbb {N}}^{*}\).

Case α = 1/2k, \(k \in {\mathbb {N}}^{*}\).:

The idea developed for α = 1/2 can easily be extended to coefficients of the form 1/2k. We can iteratively repeat the process described above, by simply using:

$$ \begin{array}{@{}rcl@{}} (-\triangle_{\text{PML}})^{1/2^{k}} = \sqrt{(-\triangle_{\text{PML}})^{1/2^{k-1}}} . \end{array} $$
$$ \begin{array}{@{}rcl@{}} \text{Op}\Big(\sqrt{\sigma\big((-\triangle_{\text{PML}})^{1/2^{k}}\big)}\Big) \approx \text{Op}\Big(\sum\limits_{k=0}^{M}a_{k}^{(M)} - \sum\limits_{k=1}^{M}\frac{a_{k}^{(M)}d_{k}^{(M)}}{\sigma\big((-\triangle_{\text{PML}})^{1/2^{k-1}}\big) + d_{k}^{(M)}} \Big) . \end{array} $$

This leads to long calculations, which however have to be done once for all for any given α = 1/2k for \(k \in {\mathbb {N}}^{*}\).

Case \(\alpha \in {\mathbb {N}}^{*}/2^{k}\), \(k\in {\mathbb {N}}^{*}\).:

We extend the above ideas to rational numbers α in the form p/2k, for \(p\in {\mathbb {N}}^{*}\). In fact, thanks to the above discussion, we simply need to detail the case α = p/2, for \(p \in {\mathbb {N}}^{*}\). Although the expressions look quite complex, in practice, simplifications and approximations are possible:

(61)

In the above system, we assume that designates some smooth real- or purely complex-valued functions and that is a finite set of strictly positive numbers in \({\mathbb {N}}^{*}/2\). We then consider the corresponding IBVP:

(62)

We can formally rewrite the symbol of (−△PML)α [1] as:

$$ \begin{array}{@{}rcl@{}} \sigma\big((-\triangle_{\text{PML}})^{p/2}\big) = \sigma\big(\sqrt{\!-\triangle_{\text{PML}}}^{p}\big) = \sigma\big(\sqrt{\!-\triangle_{\text{PML}}}\big) \# \sigma\big(\sqrt{\!-\triangle_{\text{PML}}}\big) {\cdots} \# \sigma\big(\sqrt{-\triangle_{\text{PML}}}\big) , \end{array} $$

where we recall that:

Proposition 11

[1] For two pseudodifferential operators A and B with \(C^{\infty }\)-coefficients, α = (α1,α2) with |α| = α1 + α2 and α! = α1!α2!, the symbol to the composed operator AB is given by:

$$ \begin{array}{@{}rcl@{}} \sigma(AB) = \sigma(A) \#\sigma(B) \sim \sum\limits_{|\alpha|=0}^{\infty}\frac{(-\texttt{i})^{|\alpha|}}{\alpha!}\partial^{\alpha_{1}}_{x}\partial^{\alpha_{2}}_{y}\sigma(A)\partial^{\alpha_{1}}_{\xi_{x}}\partial^{\alpha_{2}}_{\xi_{y}}\sigma(B) . \end{array} $$

From a practical point of view, the computation of these symbols and the approximation of the corresponding operators can be complex. Instead, we can proceed as follows:

  • If \(p \in 2{\mathbb {N}}^{*}\), and denoting \(q=p/2\in {\mathbb {N}}^{*}\), then the corresponding differential operator simply reads:

    $$ \begin{array}{@{}rcl@{}} (-\triangle_{\text{PML}})^{p/2} & = & \text{Op}\Big(\Big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} +\texttt{i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} + \texttt{i}\frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} \Big)^{q}\Big) \end{array} $$

    and can easily be analytically computed and numerically approximated, as a standard differential operator.

  • If \(p \in 2{\mathbb {N}}+1\), with p = 2q + 1 and \(q\in {\mathbb {N}}\), then we rewrite:

    $$ \begin{array}{@{}rcl@{}} \left. \begin{array}{lcl} \sigma\big((-\triangle_{\text{PML}})^{p/2}\big) & =&\displaystyle \sigma\big((-\triangle_{\text{PML}})^{q}\sqrt{-\triangle_{\text{PML}}} \big)\\ & = & \sigma\big((-\triangle_{\text{PML}})^{q}\big) \# \sigma\big(\sqrt{-\triangle_{\text{PML}}}\big)\\ & = & \displaystyle \sum\limits_{|\upbeta|=0}^{\infty}\frac{(-\texttt{i})^{|\upbeta|}}{\upbeta!}\partial^{{\upbeta}_{1}}_{x}\partial^{{\upbeta}_{2}}_{y} \sigma\big((-\triangle_{\text{PML}})^{q}\big)\partial^{{\upbeta}_{1}}_{\xi_{x}}\partial^{{\upbeta}_{2}}_{\xi_{y}}\sigma\big(\sqrt{-\triangle_{\text{PML}}}\big) , \end{array} \right. \end{array} $$

    where \(\upbeta =({\upbeta }_{1},{\upbeta }_{2}) \in {\mathbb {N}}^{2}\) denotes a 2-index. Regarding \(\sigma \big (\sqrt {-\triangle _{\text {PML}}}\big )\), we use Padé’s approximants, so that:

    $$ \begin{array}{@{}rcl@{}} \left. \begin{array}{lcl} \sigma\big((-\triangle_{\text{PML}})^{q+1/2}\big) \!& \approx &\! \displaystyle \sum\limits_{|\upbeta|=0}^{\infty}\frac{(-\texttt{i})^{|\upbeta|}}{\upbeta!}\partial^{{\upbeta}_{1}}_{x}\partial^{{\upbeta}_{2}}_{y} \Big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} -\texttt{i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} - \texttt{i}\frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} \Big)^{q} \\ & & \!\times \partial^{{\upbeta}_{1}}_{\xi_{x}}\partial^{{\upbeta}_{2}}_{\xi_{y}}\Big({\sum}_{k=0}^{M}a_{k}^{(M)} - {\sum}_{k=1}^{M}a_{k}^{(M)}d_{k}^{(M)}\big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} \\ & & \!+ \texttt{i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} + \texttt{i} \frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} + d_{k}^{(M)}\big)^{-1}\Big) . \end{array} \right. \end{array} $$

    From a practical point of view, we define:

    $$ \begin{array}{@{}rcl@{}} \sigma\big((-\triangle_{\text{PML}})_{m}^{q+1/2}\big) : = \sum\limits_{|\upbeta|=0}^{m}\lambda_{\upbeta}^{(m)}(x,y,\xi_{x},\xi_{y}) , \end{array} $$

    where

    $$ \begin{array}{@{}rcl@{}} \left. \begin{array}{lcl} \lambda_{\upbeta}^{(m)} & := & \partial^{{\upbeta}_{1}}_{x}\partial^{{\upbeta}_{2}}_{y} \Big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} -\texttt{i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} - \texttt{i}\frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} \Big)^{q} \\ & & \times \partial^{{\upbeta}_{1}}_{\xi_{x}}\partial^{{\upbeta}_{2}}_{\xi_{y}}\Big({\sum}_{k=0}^{M}a_{k}^{(M)} - {\sum}_{k=1}^{M}a_{k}^{(M)}d_{k}^{(M)}\big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} \\ & & + \texttt{i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} + \texttt{i} \frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} + d_{k}^{(M)}\big)^{-1}\Big) . \end{array} \right. \end{array} $$

    Tedious computations allow for an explicit expression of \(\{\lambda _{\upbeta }^{(m)}\}_{\upbeta }\). We get:

    $$ \begin{array}{@{}rcl@{}} \left. \begin{array}{lcl} \lambda_{(0,0)}^{(m)} & = & \Big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} -\texttt{i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} - \texttt{i}\frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} \Big)^{q}\\ & & \displaystyle\times \Big(\sum\limits_{k=0}^{M}a_{k}^{(M)} - \sum\limits_{k=1}^{M}a_{k}^{(M)}d_{k}^{(M)}\big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} + \texttt{i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} \\&&+ \texttt{i} \frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} + d_{k}^{(M)}\big)^{-1}\Big) . \end{array} \right. \end{array} $$

    Next, we obtain:

    $$ \begin{array}{@{}rcl@{}} \left. \begin{array}{lcl} \lambda_{(1,0)}^{(m)} \!& = &\! -q\Big(\partial_{x}\Big(\frac{1}{{S_{x}^{2}}}\Big)|\xi_{x}|^{2} - \texttt{i}\partial_{x}\Big(\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\Big)\xi_{x}\Big)\Big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} - {\tt i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} - {\tt i}\frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} \Big)^{q-1}\\ & & \!\times \frac{{\sum}_{k=1}^{M}a_{k}^{(M)}d_{k}^{(M)}\big(\frac{1}{{S_{x}^{2}}}\partial_{\xi_{x}}|\xi_{x}|^{2} + \texttt{i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\big)}{{\sum}_{k=0}^{M}a_{k}^{(M)} - {\sum}_{k=1}^{M}a_{k}^{(M)}d_{k}^{(M)}\big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} + \texttt{i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} + \texttt{i} \frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} + d_{k}^{(M)}} , \end{array} \right. \end{array} $$

    and

    $$ \begin{array}{@{}rcl@{}} \left. \begin{array}{lcl} \lambda_{(0,1)}^{(m)} \!& = &\! -q\Big(\partial_{y}\Big(\frac{1}{{S_{y}^{2}}}\Big)|\xi_{y}|^{2} -\texttt{i}\partial_{y}\Big(\frac{S_{y}^{\prime}}{{S^{3}_{y}}}\Big)\xi_{x}\Big)\Big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} - {\tt i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} - {\tt i}\frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} \Big)^{q-1}\\ & & \!\times \frac{{\sum}_{k=1}^{M}a_{k}^{(M)}d_{k}^{(M)}\big(\frac{1}{{S_{x}^{2}}}\partial_{\xi_{y}}|\xi_{y}|^{2} + \texttt{i}\frac{S_{y}^{\prime}}{{S^{3}_{y}}}\big)}{{\sum}_{k=0}^{M}a_{k}^{(M)} - {\sum}_{k=1}^{M}a_{k}^{(M)}d_{k}^{(M)}\big(\frac{1}{{S_{x}^{2}}}|\xi_{x}|^{2} + \frac{1}{{S_{y}^{2}}}|\xi_{y}|^{2} + \texttt{i}\frac{S_{x}^{\prime}}{{S^{3}_{x}}}\xi_{x} + \texttt{i} \frac{S^{\prime}_{y}}{{S^{3}_{y}}}\xi_{y} \!+ d_{k}^{(M)}} . \end{array} \right. \end{array} $$

    For |β| = 1, we have to construct \(\lambda ^{(m)}_{(1,1)}\), \(\lambda ^{(m)}_{(2,0)}\), and \(\lambda ^{(m)}_{(0,2)}\).

Appendix B: Cauchy integral approximation

In this Appendix, we discuss the approximation of Aα by using the Cauchy integral representation, for \(\alpha \in {\mathbb {R}}\) and \(A \in {\mathbb {R}}^{N\times N}\). We recall that:

$$ \begin{array}{@{}rcl@{}} A^{\alpha} & = & (2\pi \texttt{i})^{-1}A{\int}_{{\Gamma}_{A}}z^{\alpha-1}(zI-A)^{-1}dz , \end{array} $$
(63)

where ΓA is a closed contour in the complex plane enclosing the spectrum of matrix A, where the latter is assumed to have its spectrum in \({\mathbb {C}} \backslash {\mathbb {R}}_{-}\). This approach can be quite inefficient if the spectrum of the matrix A has a large radius. This leads to a straightforward approximation of the Cauchy integral based on a quadrature rule:

$$ \begin{array}{@{}rcl@{}} A_{h}^{\alpha} & = & (2\pi \texttt{i})^{-1}A\sum\limits_{j}{\Delta} z_{j} \theta_{j}z_{j}^{\alpha-1}(z_{j}I-A)^{-1} , \end{array} $$

where {𝜃j}j are interpolation weights and \(\{z_{j}\}_{j}\in {\Gamma }_{A} \subset {\mathbb {C}}\) are the interpolation nodes on ΓA. There are many ways to reduce the computational complexity [6, 7, 25, 31]. Among others, we propose in [6] the following possible approach based on the use of a traditional preconditioner M for the linear system. Typically, MA− 1, and MA has a spectrum clustering at the point (1,0) in the complex plane. Thus,

$$ \begin{array}{@{}rcl@{}} (MA)^{\alpha} & = & (2\pi \texttt{i})^{-1}MA{\int}_{{\Gamma}_{MA}}z^{\alpha-1}(zI-MA)^{-1}dz , \end{array} $$
(64)

where M) ≪ (Γ), denoting the length of a curve in the complex plan. In particular computing (64) is cheaper than (63). However, the connection between (MA)α and Aα is not necessarily simple.

Proposition 12

Assume that A is symmetric and M is a preconditioner commuting with A. Then, we have [6]:

$$ \begin{array}{@{}rcl@{}} A^{\alpha} = M^{-\alpha}(MA)^{\alpha}. \end{array} $$

In other words, the polynomial preconditioning allows for an efficient computation of matrix powers.

Practically, the proposed preconditioning allows for a reduction of the length of the contour enclosing the spectrum of the preconditioned matrix MA, as long as Mα can be efficiently computed. We refer to [6] for additional details.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoine, X., Lorin, E. & Zhang, Y. Derivation and analysis of computational methods for fractional Laplacian equations with absorbing layers. Numer Algor 87, 409–444 (2021). https://doi.org/10.1007/s11075-020-00972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00972-z

Keywords

Navigation