Skip to main content
Log in

MicroRNA-761 modulates foam cell formation and inflammation through autophagy in the progression of atherosclerosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Macrophage-derived foam cells formation is the initial stage of atherosclerosis, and lipid-laden macrophage accumulation is also considered as the symbol of unstable plaque. Autophagy is a subcellular process responsible for the degradation of damaged organelles and aggregated proteins in cells (Grootaert in Oxid Med Cell Longev: 7687083, 2018). Macrophage autophagy plays an important role in atherosclerosis under various stress conditions, and microRNAs are involved in this complicated process. The present study was programmed to explore the effects of microRNA-761 on macrophage-derived foam cell formation, focusing on the role of autophagy in this pathological process. The differentiated human THP-1 macrophages were used in the study. THP-1-derived macrophages were treated with miR-761 mimics or inhibitors and cultured with oxidized low-density lipoprotein to mimic the lipid-rich environment in blood vessel. The expression of miR-761 and mRNA levels of IL-1β and IL-18 were analyzed by quantitative real-time PCR. The effect of miR-761 on autophagy was evaluated by the protein levels of Beclin1, p62/SQSTM1, microtubule-associated protein light chain 3, mammalian target of rapamycin (mTOR), and unc-51-like autophagy activating kinase 1 (ULK1), determined by immunoblot and autophagic flux detected by fluorescent staining. The secretion of IL-1β and IL-18 was tested by enzyme-linked immunosorbent reaction kit. Lipid accumulation in foam cells was detected by oil red "O" staining. We demonstrated that miR-761 was able to repress foam cell formation and reduce the production of atherogenic inflammatory cytokines IL-1β and IL-18 in an autophagy-dependent manner in atherosclerosis, possibly via mTOR-ULK1 signaling pathway. In summary, we described an athero-protective function of miR-761 in macrophages incubated with excess ox-LDL and identified an important novel modulator of mTOR signaling and autophagy in macrophage-derived foam cells. This finding may provide a potential target for the prevention and early treatment in high-risk group of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grootaert M, Roth L, Schrijvers DM, De Meyer G, Martinet W (2018) Defective autophagy in atherosclerosis: to die or to senesce? Oxid Med Cell Longev 2018:7687083. https://doi.org/10.1155/2018/7687083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ye ZM, Yang S, Xia YP, Hu RT, Chen S, Li BW et al (2019) LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis 10:138. https://doi.org/10.1038/s41419-019-1409-410.1038/s41419-019-1409-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Evans TD, Jeong SJ, Zhang X, Sergin I, Razani B (2018) TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy 14:724–726. https://doi.org/10.1080/15548627.2018.1434373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taghizadeh E, Taheri F, Renani PG, Reiner Z, Navashenaq JG, Sahebkar A (2019) Macrophage: a key therapeutic target in atherosclerosis? Curr Pharm Des. https://doi.org/10.2174/1381612825666190830153056

    Article  PubMed  Google Scholar 

  5. Feldmann K, Grandoch M, Kohlmorgen C, Valentin B, Gerfer S, Nagy N et al (2019) Decreased M1 macrophage polarization in dabigatran-treated Ldlr-deficient mice: Implications for atherosclerosis and adipose tissue inflammation. Atherosclerosis 287:81–88. https://doi.org/10.1016/j.atherosclerosis.2019.06.897

    Article  CAS  PubMed  Google Scholar 

  6. Lin L, Huang S, Zhu Z, Han J, Wang Z, Huang W et al (2018) P2X7 receptor regulates EMMPRIN and MMP9 expression through AMPK/MAPK signaling in PMAinduced macrophages. Mol Med Rep 18:3027–3033. https://doi.org/10.3892/mmr.2018.9282

    Article  CAS  PubMed  Google Scholar 

  7. Tajbakhsh A, Bianconi V, Pirro M, Gheibi HS, Johnston TP, Sahebkar A (2019) Efferocytosis and atherosclerosis: regulation of phagocyte function by microRNAs. Trends Endocrinol Metab 30:672–683. https://doi.org/10.1016/j.tem.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Wang Y, Zhou D, Zhang LS, Deng FX, Shu S et al (2019) Angiotensin II deteriorates advanced atherosclerosis by promoting MerTK cleavage and impairing efferocytosis through the AT1R/ROS/p38 MAPK/ADAM17 pathway. Am J Physiol Cell Physiol 317:C776–C787. https://doi.org/10.1152/ajpcell.00145.2019

    Article  CAS  PubMed  Google Scholar 

  9. Zhong S, Li L, Zhang YL, Zhang L, Lu J, Guo S et al (2019) Acetaldehyde dehydrogenase 2 interactions with LDLR and AMPK regulate foam cell formation. J Clin Invest 129:252–267. https://doi.org/10.1172/JCI122064

    Article  PubMed  Google Scholar 

  10. Sergin I, Evans TD, Zhang X, Bhattacharya S, Stokes CJ, Song E et al (2017) Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nat Commun 8:15750. https://doi.org/10.1038/ncomms15750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang X, Wang C, Sun Y, Song W, Lin J, Li J et al (2019) p62/mTOR/LXRalpha pathway inhibits cholesterol efflux mediated by ABCA1 and ABCG1 during autophagy blockage. Biochem Biophys Res Commun 514:1093–1100. https://doi.org/10.1016/j.bbrc.2019.04.134

    Article  CAS  PubMed  Google Scholar 

  12. Zhou F, Liu D, Ning HF, Yu XC, Guan XR (2016) The roles of p62/SQSTM1 on regulation of matrix metalloproteinase-9 gene expression in response to oxLDL in atherosclerosis. Biochem Biophys Res Commun 472:451–458. https://doi.org/10.1016/j.bbrc.2016.01.065

    Article  CAS  PubMed  Google Scholar 

  13. Miyazaki T, Miyazaki A (2019) Impact of dysfunctional protein catabolism on macrophage cholesterol handling. Curr Med Chem 26:1631–1643. https://doi.org/10.2174/0929867325666180326165234

    Article  CAS  PubMed  Google Scholar 

  14. Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS et al (2012) Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 15:545–553. https://doi.org/10.1016/j.cmet.2012.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sergin I, Razani B (2014) Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends Endocrinol Metab 25:225–234. https://doi.org/10.1016/j.tem.2014.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhai C, Cheng J, Mujahid H, Wang H, Kong J, Yin Y et al (2014) Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque. PLoS ONE 9:e90563. https://doi.org/10.1371/journal.pone.0090563

    Article  PubMed  PubMed Central  Google Scholar 

  17. Laffont B, Rayner KJ (2017) MicroRNAs in the pathobiology and therapy of atherosclerosis. Can J Cardiol 33:313–324. https://doi.org/10.1016/j.cjca.2017.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schober A, Weber C (2016) Mechanisms of microRNAs in atherosclerosis. Annu Rev Pathol 11:583–616. https://doi.org/10.1146/annurev-pathol-012615-044135

    Article  CAS  PubMed  Google Scholar 

  19. Cho JR, Lee CY, Lee J, Seo HH, Choi E, Chung N et al (2015) MicroRNA-761 inhibits Angiotensin II-induced vascular smooth muscle cell proliferation and migration by targeting mammalian target of rapamycin. Clin Hemorheol Microcirc 63:45–56. https://doi.org/10.3233/CH-151981

    Article  PubMed  Google Scholar 

  20. Long B, Wang K, Li N, Murtaza I, Xiao JY, Fan YY et al (2013) miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Radic Biol Med 65:371–379. https://doi.org/10.1016/j.freeradbiomed.2013.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kattoor AJ, Kanuri SH, Mehta JL (2018) Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem. https://doi.org/10.2174/0929867325666180508100950

    Article  Google Scholar 

  22. Gao LN, Zhou X, Lu YR, Li K, Gao S, Yu CQ et al (2018) Dan-Lou prescription inhibits foam cell formation induced by ox-LDL via the TLR4/NF-kappaB and PPARgamma signaling pathways. FRONT PHYSIOL 9:590. https://doi.org/10.3389/fphys.2018.00590

    Article  PubMed  PubMed Central  Google Scholar 

  23. Raimondi M, Cesselli D, Di Loreto C, La Marra F, Schneider C, Demarchi F (2018) USP1 (ubiquitin specific peptidase 1) targets ULK1 and regulates its cellular compartmentalization and autophagy. Autophagy. https://doi.org/10.1080/15548627.2018.1535291

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Jiang J, Liu W, Wang H, Zhao L, Liu S et al (2018) microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proc Natl Acad Sci USA 115:E10849–E10858. https://doi.org/10.1073/pnas.1803377115

    Article  CAS  PubMed  Google Scholar 

  25. Ning H, Liu D, Yu X, Guan X (2017) Oxidized low-density lipoprotein-induced p62/SQSTM1 accumulation in THP-1-derived macrophages promotes IL-18 secretion and cell death. Exp Ther Med 14:5417–5423. https://doi.org/10.3892/etm.2017.5221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M et al (2015) Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 11:271–284. https://doi.org/10.1080/15548627.2015.1009787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kou JY, Li Y, Zhong ZY, Jiang YQ, Li XS, Han XB et al (2017) Berberine-sonodynamic therapy induces autophagy and lipid unloading in macrophage. Cell Death Dis 8:e2558. https://doi.org/10.1038/cddis.2016.354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan J, Liu L, Liu Q, Cui Y, Yao B, Zhang M et al (2019) CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGgamma. Nat Commun 10:425. https://doi.org/10.1038/s41467-018-07895-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fuschi P, Maimone B, Gaetano C, Martelli F (2019) Noncoding RNAs in the vascular system response to oxidative stress. Antioxid Redox Signal 30:992–1010. https://doi.org/10.1089/ars.2017.7229

    Article  CAS  PubMed  Google Scholar 

  30. Natarelli L, Geissler C, Csaba G, Wei Y, Zhu M, di Francesco A et al (2018) miR-103 promotes endothelial maladaptation by targeting lncWDR59. Nat Commun 9:2645. https://doi.org/10.1038/s41467-018-05065-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ren Y, Shi G, Jiang P, Meng Q (2019) MicroRNA-761 is downregulated in colorectal cancer and regulates tumor progression by targeting Rab3D. Exp Ther Med 17:1841–1846. https://doi.org/10.3892/etm.2018.7126

    Article  CAS  PubMed  Google Scholar 

  32. Chen Z, Zuo X, Pu L, Zhang Y, Han G, Zhang L et al (2019) CircLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma. Cancer Sci 110:568–581. https://doi.org/10.1111/cas.13901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang MY, Zhang ZL, Cui HX, Wang RK, Fu L (2018) Long non-coding RNA FENDRR inhibits NSCLC cell growth and aggressiveness by sponging miR-761. Eur Rev Med Pharmacol Sci 22:8324–8332. https://doi.org/10.26355/eurrev_201812_16530

    Article  PubMed  Google Scholar 

  34. Cekin N, Ozcan A, Goksel S, Arslan S, Pinarbasi E, Berkan O (2018) Decreased FENDRR and LincRNA-p21 expression in atherosclerotic plaque. Anatol J Cardiol 19:131–136. https://doi.org/10.14744/AnatolJCardiol.2017.8081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng J, Chen J, Zhao Y, Yang J, Xue K, Wang Z (2020) MicroRNA-761 suppresses remodeling of nasal mucosa and epithelial-mesenchymal transition in mice with chronic rhinosinusitis through LCN2. Stem Cell Res Ther 11:151. https://doi.org/10.1186/s13287-020-01598-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shibata K, Sato K, Shirai R, Seki T, Okano T, Yamashita T et al (2020) Lipocalin-2 exerts pro-atherosclerotic effects as evidenced by in vitro and in vivo experiments. Heart Vessels 35:1012–1024. https://doi.org/10.1007/s00380-020-01556-6

    Article  PubMed  Google Scholar 

  37. Jeong SJ, Zhang X, Rodriguez-Velez A, Evans TD, Razani B (2019) p62/SQSTM1 and selective autophagy in cardiometabolic diseases. Antioxid Redox Signal 31:458–471. https://doi.org/10.1089/ars.2018.7649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Gu YH, Liang LY, Liu M, Jiang B, Zhu MJ et al (2018) Concurrence of autophagy with apoptosis in alveolar epithelial cells contributes to chronic pulmonary toxicity induced by methamphetamine. Cell Prolif 51:e12476. https://doi.org/10.1111/cpr.12476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cai Z, He Y, Chen Y (2018) Role of mammalian target of rapamycin in atherosclerosis. Curr Mol Med 18:216–232. https://doi.org/10.2174/1566524018666180926163917

    Article  CAS  PubMed  Google Scholar 

  40. Brichkina A, Bulavin DV (2012) WIP-ing out atherosclerosis with autophagy. Autophagy 8:1545–1547. https://doi.org/10.4161/auto.21402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beutner F, Brendel D, Teupser D, Sass K, Baber R, Mueller M et al (2012) Effect of everolimus on pre-existing atherosclerosis in LDL-receptor deficient mice. Atherosclerosis 222:337–343. https://doi.org/10.1016/j.atherosclerosis.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  42. Gatica D, Chiong M, Lavandero S, Klionsky DJ (2015) Molecular mechanisms of autophagy in the cardiovascular system. Circ Res 116:456–467. https://doi.org/10.1161/CIRCRESAHA.114.303788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma S, Chen J, Feng J, Zhang R, Fan M, Han D et al (2018) Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxid Med Cell Longev 2018:9286458. https://doi.org/10.1155/2018/9286458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma Y, Huang Z, Zhou Z, He X, Wang Y, Meng C et al (2018) A novel antioxidant Mito-Tempol inhibits ox-LDL-induced foam cell formation through restoration of autophagy flux. Free Radic Biol Med 129:463–472. https://doi.org/10.1016/j.freeradbiomed.2018.10.412

    Article  CAS  PubMed  Google Scholar 

  45. Chen X, Wang N, Zhu Y, Lu Y, Liu X, Zheng J (2017) The antimalarial chloroquine suppresses LPS-induced NLRP3 inflammasome activation and confers protection against murine endotoxic shock. Mediat Inflamm 2017:6543237. https://doi.org/10.1155/2017/6543237

    Article  CAS  Google Scholar 

  46. Wang X, Li L, Niu X, Dang X, Li P, Qu L et al (2014) mTOR enhances foam cell formation by suppressing the autophagy pathway. DNA Cell Biol 33:198–204. https://doi.org/10.1089/dna.2013.2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (81672084).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the study. CW designed the study, performed the experiments, and drafted the manuscript. WY and XFL processed the data analysis and methodology. YS, WS, and JL discussed the results and reviewed the manuscript. XRG directed the design of the study and reviewed the final manuscript.

Corresponding author

Correspondence to Xiuru Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yang, W., Liang, X. et al. MicroRNA-761 modulates foam cell formation and inflammation through autophagy in the progression of atherosclerosis. Mol Cell Biochem 474, 135–146 (2020). https://doi.org/10.1007/s11010-020-03839-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03839-y

Keywords

Navigation