Skip to main content

Advertisement

Log in

Porous an hollow nanofibers for solid oxide fuel cell electrodes

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Among the diverse approaches for improving the electrode performance of solid oxide fuel cells operating at intermediate temperatures, the use of nanofiber-based electrodes has provided large improvement owing to their large specific surface area, continuous conduction pathway, and highly porous structure. However, the low thermal stability at increased temperature often limits the process compatibility and sustainability during operation. In this study, we fabricated nanofiber-based electrodes with a high porosity and hollow shape using one-step electrospinning with a hydrogel polymer, which exhibited largely improved performance and excellent thermal stability. A porous-nanofiber-based cell exhibits a polarization resistance of 0.021 Ωcm2 and maximum power density of 1.71 W/cm2 at 650 °C, which is an improvement of 34.3% and 14.7% compared to that of a solid-nanofiber-based cell, respectively. Comprehensive analyses of the microstructures and chemistry indicate that the performance increase is mainly attributable to the enhanced surface oxygen exchange reactions owing to the extended reaction sites with lower energy barriers by the high porosity and enriched oxygen vacancies in the nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ea :

activation energy [eV]

Ea, o :

activation energy for the ohmic resistance [eV]

Ea, p :

activation energy for the polarization resistance [eV]

Ea, t :

activation energy for the total resistance [eV]

Ro :

ohmic resistance [Ωcm2]

Rp :

polarization resistance [Ωcm2]

References

  1. Y. Jeon, J.-h. Myung, S.-h. Hyun, Y.-g. Shul and J. T. S. Irvine, J. Mater. Chem. A, 5, 3966 (2017).

    CAS  Google Scholar 

  2. Y. Chen, Y. Bu, B. Zhao, Y. Zhang, D. Ding, R. Hu, T. Wei, B. Rain-water, Y. Ding, F. Chen, C. Yang, J. Liu and M. Liu, Nano Energy, 26, 90 (2016).

    CAS  Google Scholar 

  3. C. Kim, H. Park, I. Jang, S. Kim, K. Kim, H. Yoon and U. Paik, J. Power Sources, 378, 404 (2018).

    CAS  Google Scholar 

  4. M. Ahn, J. Lee and W. Lee, J. Power Sources, 353, 176 (2017).

    CAS  Google Scholar 

  5. J.-W. Jung, C.-L. Lee, S. Yu and I.-D. Kim, J. Mater. Chem. A, 4, 703 (2016).

    CAS  Google Scholar 

  6. L. Qie, W. M. Chen, Z. H. Wang, Q. G. Shao, X. Li, L. X. Yuan, X. L. Hu, W. X. Zhang and Y. H. Huang, Adv. Mater, 24, 2047 (2012).

    PubMed  Google Scholar 

  7. A. Khalil, J. J. Kim, H. L. Tuller, G. C. Rutledge and R. Hashaikeh, Sensor. Actuat. B-Chem., 227, 54 (2016).

    CAS  Google Scholar 

  8. D.-J. Yang, I. Kamienchick, D. Y. Youn, A. Rothschild and I.-D. Kim, Adv. Funct. Mater., 20, 4258 (2010).

    CAS  Google Scholar 

  9. J. G. Lee, J. H. Park and Y. G. Shul, Nat. Commun., 5, 4045 (2014).

    CAS  PubMed  Google Scholar 

  10. M. Ahn, S. Han, J. Lee and W. Lee, Ceram. Int., 46, 6006 (2020).

    CAS  Google Scholar 

  11. M. Ahn, J. Cho and W. Lee, J. Power Sources, 434, 226749 (2019).

    CAS  Google Scholar 

  12. J. Y. Koo, Y. Lim, Y. B. Kim, D. Byun and W. Lee, Int. J. Hydrogen Energy, 42, 15903 (2017).

    CAS  Google Scholar 

  13. M. G. Bellino, J. G. Sacanell, D. G. Lamas, A. G. Leyva and N. E. W. de Reca, J. Am. Chem. Soc., 129, 3066 (2007).

    CAS  PubMed  Google Scholar 

  14. J. Li, N. Zhang, Z. He, K. Sun and Z. Wu, J. Alloys Compd., 663, 664 (2016).

    CAS  Google Scholar 

  15. P. Liu, Y. Zhu, J. Ma, S. Yang, J. Gong and J. Xu, Colloids Surf. A, 436, 489 (2013).

    CAS  Google Scholar 

  16. E. Zhao, X. Liu, L. Liu, H. Huo and Y. Xiong, Pro. Nat. Sci-Mater., 24, 24 (2014).

    Google Scholar 

  17. E. P. Murray, M. J. Sever and S. A. Barnett, Solid State Ionics, 148, 27 (2002).

    Google Scholar 

  18. S. Huang, C. Peng and Z. Zong, J. Power Sources, 176, 102 (2008).

    CAS  Google Scholar 

  19. M. Zhi, S. Lee, N. Miller, N. H. Menzler and N. Wu, Energy Environ. Sci., 5, 7066 (2012).

    CAS  Google Scholar 

  20. F. Zhao, R. Peng and C. Xia, Mater. Res. Bull., 43, 370 (2008).

    CAS  Google Scholar 

  21. J. Lee, S. Hwang, M. Ahn, M. Choi, S. Han, D. Byun and W. Lee, J. Mater. Chem. A, 7, 21120 (2019).

    CAS  Google Scholar 

  22. C.-L. Chang, C.-S. Hsu, J.-B. Huang, P.-H. Hsu and B.-H. Hwang, J. Alloys Compd., 620, 233 (2015).

    CAS  Google Scholar 

  23. E. Zhao, Z. Jia, X. Liu, K. Gao, H. Huo and Y. Xiong, Ceram. Int., 40, 14891 (2014).

    CAS  Google Scholar 

  24. M. Koyama, C.-j. Wen, T. Masuyama, J. Otomo, H. Fukunaga, K. Yamada, K. Eguchi and H. Takahashi, J. Electrochem. Soc., 148, A795 (2001).

    CAS  Google Scholar 

  25. M. K. H. Fukunaga, N. Takahashi, C. Wen and K. Yamada, Solid State Ionics, 1, 279 (2000).

    Google Scholar 

  26. M. Choi, J. Lee and W. Lee, J. Mater. Chem. A, 6, 11811 (2018).

    CAS  Google Scholar 

  27. J. Y. Koo, S. Hwang, M. Ahn, M. Choi, D. Byun, W. Lee and K. Lu, J. Am. Ceram. Soc., 9, 3146 (2016).

    Google Scholar 

  28. L. Fan, Y. Wang, Z. Jia, Y. Xiong and M. E. Brito, Ceram. Int., 41, 6583 (2015).

    CAS  Google Scholar 

  29. Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua and L. Jiang, J. Appl. Polym., 99, 23 (2006).

    CAS  Google Scholar 

  30. A. Bigi, A. Ripamonti, G. Cojazzi, G. Pizzuto, N. Roveri and M. Koch, Int. J. Biol. Macromol., 13, 110 (1991).

    CAS  PubMed  Google Scholar 

  31. W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich and Y. Shao-Horn, Energy Environ. Sci., 8, 1404 (2015).

    CAS  Google Scholar 

  32. H. Lv, Y. Wu, B. Huang, B. Zhao and K. Hu, Solid State Ionics, 177, 901 (2006).

    CAS  Google Scholar 

  33. W. Lee, H. J. Jung, M. H. Lee, Y.-B. Kim, J. S. Park, R. Sinclair and F. B. Prinz, Adv. Funct. Mater., 22, 965 (2012).

    CAS  Google Scholar 

  34. J. Bae, Y. Lim, J.-S. Park, D. Lee, S. Hong, J. An and Y.-B. Kim, J. Electrochem. Soc., 163, F919 (2016).

    CAS  Google Scholar 

  35. Y. B. Kim, J. S. Park, T. M. Gür and F. B. Prinz J. Power Sources, 196, 10550 (2011).

    CAS  Google Scholar 

  36. J. S. Park, J. An, M. H. Lee, F. B. Prinz and W. Lee, J. Power Sources, 295, 74 (2015).

    CAS  Google Scholar 

  37. A. Berenov, A. Atkinson, J. Kilner, M. Ananyev, V. Eremin, N. Porotnikova, A. Farlenkov, E. Kurumchin, H. J. M. Bouwmeester, E. Bucher and W. Sitte, Solid State Ionics, 268, 102 (2014).

    CAS  Google Scholar 

  38. X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su, M. Liu and Z. Shao, Adv. Mater., 28, 6442 (2016).

    CAS  PubMed  Google Scholar 

  39. R. Liu, F. Liang, W. Zhou, Y. Yang and Z. Zhu, Nano Energy, 12, 115 (2015).

    CAS  Google Scholar 

  40. J. I. Jung, H. Y. Jeong, M. G. Kim, G. Nam, J. Park and J. Cho, Adv. Mater., 27, 266 (2015).

    CAS  PubMed  Google Scholar 

  41. Y. Zhu, W. Zhou, Y. Chen, J. Yu, M. Liu and Z. Shao, Adv. Mater., 27, 7150 (2015).

    CAS  PubMed  Google Scholar 

  42. S. A. Lee, S. Oh, J.-Y. Hwang, M. Choi, C. Youn, J. W. Kim, S. H. Chang, S. Woo, J.-S. Bae, S. Park, Y.-M. Kim, S. Lee, T. Choi, S. W. Kim and W. S. Choi, Energy Environ. Sci., 10, 924 (2017).

    CAS  Google Scholar 

  43. W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai and Y. Yin, Nano Energy, 43, 110 (2018).

    CAS  Google Scholar 

  44. K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard and H. Sirringhaus, Nat. Mater., 10, 45 (2011).

    CAS  PubMed  Google Scholar 

  45. M. Choi, I. A. M. Ibrahim, K. Kim, J. Y. Koo, S. J. Kim, J.-W. Son, J. W. Han and W. Lee, ACS Appl. Mater. Interfaces, 12, 21494 (2020).

    CAS  PubMed  Google Scholar 

  46. S. J. Kim, M. Choi, J. Lee and W. Lee, J. Eur. Ceram. Soc., 40, 3089 (2020).

    CAS  Google Scholar 

  47. S. B. Adler, Chem. Rev., 10, 4791 (2004).

    Google Scholar 

  48. F. Baumann, J. Fleig, H. Habermeier and J. Maier, Solid State Ionics, 177, 1071 (2006).

    CAS  Google Scholar 

  49. Y. Chen, Y. Bu, Y. Zhang, R. Yan, D. Ding, B. Zhao, S. Yoo, D. Dang, R. Hu, C. Yang and M. Liu, Adv. Energy Mater., 7, 160890 (2017).

    Google Scholar 

  50. M. Choi, S. Hwang, S. J. Kim, J. Lee, D. Byun and W. Lee, ACS Appl. Energy Mater., 2, 4059 (2019).

    CAS  Google Scholar 

  51. S. W. Baek, J. Bae and Y. S. Yoo, J. Power Sources, 193, 431 (2009).

    CAS  Google Scholar 

  52. J. G. Lee, M. G. Park, J. H. Park and Y. G. Shul, Ceram. Int., 40, 8053 (2014).

    CAS  Google Scholar 

  53. M. Muranaka, K. Sasaki, A. Suzuki and T. Terai, J. Electrochem. Soc., 156, B743 (2009).

    CAS  Google Scholar 

  54. Y. L. Yang, A. J. Jacobson, C. L. Chen, G. P. Luo, K. D. Ross and C. W. Chu, Appl. Phys. Lett., 79, 776 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) grant funded by the Korea government (MSIP), and Future Planning (Grant No. 2019R1A2C4070158, 2017R1E1A1A01075353), by the Global Frontier R&D program on Center for Multiscale Energy System funded by the NRF under the Ministry of Science, ICT, and Future Planning, Korea (Grant No. NRF-2014M3A6A7074784), and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010032170), and by the Technology Development Program to Solve Climate Changes (2017M1A2A2044927).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Doyoung Byun or Wonyoung Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, M., Hwang, S., Han, S. et al. Porous an hollow nanofibers for solid oxide fuel cell electrodes. Korean J. Chem. Eng. 37, 1371–1378 (2020). https://doi.org/10.1007/s11814-020-0610-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0610-6

Keywords

Navigation