Skip to main content

Advertisement

Log in

Effect of carbon nanoscaffolds on hydrogen storage performance of magnesium hydride

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

With a growing concern on climate change, hydrogen has attracted great attention as an alternative energy fuel. The hydrogen economy allows us to accomplish a high level of energy security and realize zero emission. To successfully establish the hydrogen economy, the development of sustainable hydrogen production, storage and fuel cell technologies is important; among them, safe and stable hydrogen storage remains more challenging. In this review, we briefly introduce solid-state hydrogen storage materials, focusing on metal hydrides and hydrogen sorption mechanism with emphasis on the related thermodynamic and kinetic obstacles. To overcome such limits, nanoconfinement is regarded as a representative strategy since it can modify hydrogen sorption kinetics and thermodynamics of metal hydrides. We present a nanoconfinement effect of metal hydrides on hydrogen sorption properties, spotlighting carbon scaffolds for confinement. With a rational design of the composite based on metal hydrides and carbon scaffolds, a potential application of solid-state hydrogen storage will be a stepping-stone on the path to a hydrogen economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Hyun, S. Kang and Y. Kwon, Korean J. Chem. Eng., 36(3), 500 (2019).

    CAS  Google Scholar 

  2. S. Kim, J. Song and H. Lim, Korean J. Chem. Eng., 35(7), 1509 (2018).

    CAS  Google Scholar 

  3. S. Dunn, Int. J. Hydrogen Energy, 27(3), 235 (2002).

    CAS  Google Scholar 

  4. L. Schlapbach and A. Züttel, Nature, 414(6861), 353 (2001).

    CAS  PubMed  Google Scholar 

  5. J. Tollefson, Nature, 464(7293), 1262 (2010).

    CAS  PubMed  Google Scholar 

  6. M. Felderhoff, C. Weidenthaler, R. von Helmolt and U. Eberle, Phys. Chem. Chem. Phys., 9(21), 2643 (2007).

    CAS  PubMed  Google Scholar 

  7. M. D. Allendorf, Z. Hulvey, T. Gennett, A. Ahmed, T. Autrey, J. Camp, E. S. Cho, H. Furukawa, M. Haranczyk, M. Head-Gordon, S. Jeong, A. Karkamkar, D.-J. Liu, J. R. Long, K. R. Meihaus, I. H. Nayyar, R. Nazarov, D. J. Siegel, V. Stavila, J. J. Urban, S. P. Veccham and B. C. Wood, Energy Environ. Sci., 11(10), 2784 (2018).

    CAS  Google Scholar 

  8. N. A. A. Rusman and M. Dahari, Int. J. Hydrogen Energy, 41(28), 12108 (2016).

    CAS  Google Scholar 

  9. I. P. Jain, C. Lal and A. Jain, Int. J. Hydrogen Energy, 35(10), 5133 (2010).

    CAS  Google Scholar 

  10. H. Shao, G. Xin, J. Zheng, X. Li and E. Akiba, Nano Energy, 1(4), 590 (2012).

    CAS  Google Scholar 

  11. J. Yang and S. Hirano, Adv. Mater., 21(29), 3023 (2009).

    CAS  Google Scholar 

  12. T. Asefa, K. Koh and C. W. Yoon, Adv. Energy Mater., 9(30), 1901158 (2019).

    Google Scholar 

  13. S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz, Catal. Today, 120(3), 246 (2007).

    CAS  Google Scholar 

  14. Q. Lai, Y. Sun, T. Wang, P. Modi, C. Cazorla, U. B. Demirci, J. R. Ares-Fernandez, F. Leardini and K.-F. Aguey-Zinsou, Adv. Sustain. Syst., 3(9), 1900043 (2019).

    Google Scholar 

  15. A. Schneemann, J. L. White, S. Kang, S. Jeong, L. F. Wan, E. S. Cho, T. W. Heo, D. Prendergast, J. J. Urban, B. C. Wood, M. D. Allendorf and V. Stavila, Chem. Rev., 118(22), 10775 (2018).

    CAS  PubMed  Google Scholar 

  16. Y. Sun, C. Shen, Q. Lai, W. Liu, D.-W. Wang and K.-F. Aguey-Zinsou, Energy Storage Mater., 10, 168 (2018).

    Google Scholar 

  17. M. Konarova, A. Tanksale, J. N. Beltramini and G. Q. Lu, Nano Energy, 2(1), 98 (2013).

    CAS  Google Scholar 

  18. W. Liu and K.-F. Aguey-Zinsou, J. Mater. Chem. A, 2(25), 9718 (2014).

    CAS  Google Scholar 

  19. E. S. Cho, A. M. Ruminski, S. Aloni, Y.-S. Liu, J. Guo and J. J. Urban, Nat. Commun., 7(1), 10804 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. K.-J. Jeon, H. R. Moon, A. M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan and J. J. Urban, Nat. Mater., 10(4), 286 (2011).

    CAS  PubMed  Google Scholar 

  21. E. S. Cho, A. M. Ruminski, Y.-S. Liu, P. T. Shea, S. Kang, E. W. Zaia, J. Y. Park, Y.-D. Chuang, J. M. Yuk, X. Zhou, T. W. Heo, J. Guo, B. C. Wood and J. J. Urban, Adv. Funct. Mater., 27(47), 1704316 (2017).

    Google Scholar 

  22. V. Bérubé, G. Radtke, M. Dresselhaus and G. Chen, Int. J. Energy Res., 31(6–7), 637 (2007).

    Google Scholar 

  23. N. S. Norberg, T. S. Arthur, S. J. Fredrick and A. L. Prieto, J. Am. Chem. Soc., 133(28), 10679 (2011).

    CAS  PubMed  Google Scholar 

  24. A. San-Martin and F. D. Manchester, J. Phase Equilib., 8(5), 431 (1987).

    CAS  Google Scholar 

  25. N. B. Arboleda Jr., H. Kasai, K. Nobuhara, W. A. Diño and H. Nakanishi, J. Phys. Soc. Jpn., 73(3), 745 (2004).

    CAS  Google Scholar 

  26. A. Züttel, Mater. Today, 6(9), 24 (2003).

    Google Scholar 

  27. K.-F. Aguey-Zinsou and J.-R. Ares-Fernández, Energy Environ. Sci., 3(5), 526 (2010).

    CAS  Google Scholar 

  28. B. Sakintuna, F. Lamari-Darkrim and M. Hirscher, Int. J. Hydrogen Energy, 32(9), 1121 (2007).

    CAS  Google Scholar 

  29. P. Heitjans and S. Indris, J. Mater. Sci., 39(16), 5091 (2004).

    CAS  Google Scholar 

  30. T. Hongo, K. Edalati, M. Arita, J. Matsuda, E. Akiba and Z. Horita, Acta Mater., 92, 46 (2015).

    CAS  Google Scholar 

  31. Y. Pang and Q. Li, Int. J. Hydrogen Energy, 41(40), 18072 (2016).

    CAS  Google Scholar 

  32. M. H. Mintz and Y. Zeiri, J. Alloys Compd., 216(2), 159 (1995).

    CAS  Google Scholar 

  33. P. E. de Jongh and P. Adelhelm, ChemSusChem, 3(12), 1332 (2010).

    CAS  PubMed  Google Scholar 

  34. K.-F. Aguey-Zinsou and J.-R. Ares-Fernández, Chem. Mater., 20(2), 376 (2008).

    CAS  Google Scholar 

  35. S. B. Kalidindi and B. R. Jagirdar, Inorg. Chem., 48(10), 4524 (2009).

    CAS  PubMed  Google Scholar 

  36. J. C. Crivello, B. Dam, R. V. Denys, M. Dornheim, D. M. Grant, J. Huot, T. R. Jensen, P. de Jongh, M. Latroche, C. Milanese, D. Milčius, G. S. Walker, C. J. Webb, C. Zlotea and V. A. Yartys, Appl. Phys. A, 122, 97 (2016).

    Google Scholar 

  37. B. Paik, I. P. Jones, A. Walton, V. Mann, D. Book and I. R. Harris, Philos. Mag. Lett., 90(1), 1 (2010).

    CAS  Google Scholar 

  38. J. M. Sander, L. Ismer and C. G. Van de Walle, Int. J. Hydrogen Energy, 41(13), 5688 (2016).

    CAS  Google Scholar 

  39. S. X. Tao, W. P. Kalisvaart, M. Danaie, D. Mitlin, P. H. L. Notten, R. A. van Santen and A. P. J. Jansen, Int. J. Hydrogen Energy, 36(18), 11802 (2011).

    CAS  Google Scholar 

  40. L. Pasquini, M. Sacchi, M. Brighi, C. Boelsma, S. Bals, T. Perkisas and B. Dam, Int. J. Hydrogen Energy, 39(5), 2115 (2011).

    Google Scholar 

  41. A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam and R. Griessen, Phys. Rev. Lett., 102(22), 226102 (2009).

    CAS  PubMed  Google Scholar 

  42. R. Gosalawit-Utke, S. Meethom, C. Pistidda, C. Milanese, D. Laipple, T. Saisopa, A. Marini, T. Klassen and M. Dornheim, Int. J. Hydrogen Energy, 39(10), 5019 (2014).

    CAS  Google Scholar 

  43. S. S. Makridis, E. I. Gkanas, G. Panagakos, E. S. Kikkinides, A. K. Stubos, P. Wagener and S. Barcikowski, Int. J. Hydrogen Energy, 38(26), 11530 (2013).

    CAS  Google Scholar 

  44. F. Peru, S. Garroni, R. Campesi, C. Milanese, A. Marini, E. Pellicer, M. D. Baró and G. Mulas, J. Alloys Compd., 580, S309 (2013).

    CAS  Google Scholar 

  45. A. F. Gross, J. J. Vajo, S. L. Van Atta and G. L. Olson, J. Phys. Chem. C, 112(14), 5651 (2008).

    CAS  Google Scholar 

  46. C. L. Carr, W. Jayawardana, H. Zou, J. L. White, F. El Gabaly, M. S. Conradi, V. Stavila, M. D. Allendorf and E. H. Majzoub, Chem. Mater., 30(9), 2930 (2018).

    CAS  Google Scholar 

  47. P. Ngene, P. Adelhelm, A. M. Beale, K. P. De Jong and P. E. De Jongh, J. Phys. Chem. C, 114(13), 6163 (2010).

    CAS  Google Scholar 

  48. R. K. Bhakta, J. L. Herberg, B. Jacobs, A. Highley, R. Behrens, N. W. Ockwig, J. A. Greathouse and M. D. Allendorf, J. Am. Chem. Soc., 131(37), 13198 (2009).

    CAS  PubMed  Google Scholar 

  49. V. Stavila, R. K. Bhakta, T. M. Alam, E. H. Majzoub and M. D. Allendorf, ACS Nano, 6(11), 9807 (2012).

    CAS  PubMed  Google Scholar 

  50. S. Chumphongphan, U. Filsø, M. Paskevicius, D. A. Sheppard, T. R. Jensen and C. E. Buckley, Int. J. Hydrogen Energy, 39(21), 11103 (2014).

    CAS  Google Scholar 

  51. C. B. Minella, I. Lindemann, P. Nolis, A. Kießling, M. D. Baró, M. Klose, L. Giebeler, B. Rellinghaus, J. Eckert, L. Schultz and O. Gutfleisch, Int. J. Hydrogen Energy, 38(21), 8829 (2013).

    Google Scholar 

  52. L. Li, X. Yao, C. Sun, A. Du, L. Cheng, Z. Zhu, C. Yu, J. Zou, S. C. Smith, P. Wang, H.-M. Cheng, R. L. Frost and G. Q. Lu, Adv. Funct. Mater., 19(2), 265 (2009).

    CAS  Google Scholar 

  53. D. He, Y. Wang, C. Wu, Q. Li, W. Ding and C. Sun, Appl. Phys. Lett., 107(24), 243907 (2015).

    Google Scholar 

  54. Y. Jia and X. Yao, Int. J. Hydrogen Energy, 42(36), 22933 (2017).

    CAS  Google Scholar 

  55. G. Liu, Y. Wang, C. Xu, F. Qiu, C. An, L. Li, L. Jiao and H. Yuan, Nanoscale, 5(3), 1074 (2013).

    CAS  PubMed  Google Scholar 

  56. G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo, H. Liu, L. Ouyang, M. Zhu and X. Yu, Adv. Mater., 27(39), 5981 (2015).

    CAS  PubMed  Google Scholar 

  57. Y. Huang, G. Xia, J. Chen, B. Zhang, Q. Li and X. Yu, Prog. Nat. Sci., 27(1), 81 (2017).

    CAS  Google Scholar 

  58. L. F. Wan, Y.-S. Liu, E. S. Cho, J. D. Forster, S. Jeong, H.-T. Wang, J. J. Urban, J. Guo and D. Prendergast, Nano Lett., 17(9), 5540 (2017).

    CAS  PubMed  Google Scholar 

  59. J. Zhang, Y. Zhu, H. Lin, Y. Liu, Y. Zhang, S. Li, Z. Ma and L. Li, Adv. Mater., 29(24), 1700760 (2017).

    Google Scholar 

  60. T. K. Nielsen, K. Manickam, M. Hirscher, F. Besenbacher and T. R. Jensen, ACS Nano, 3(11), 3521 (2009).

    CAS  PubMed  Google Scholar 

  61. Z. Zhao-Karger, J. Hu, A. Roth, D. Wang, C. Kübel, W. Lohstroh and M. Fichtner, Chem. Commun., 46(44), 8353 (2010).

    CAS  Google Scholar 

  62. Q. Zhang, Y. Huang, T. Ma, K. Li, F. Ye, X. Wang, L. Jiao, H. Yuan and Y. Wang, J. Alloys Compd., 825, 153953 (2020).

    CAS  Google Scholar 

  63. C. Z. Wu, P. Wang, X. Yao, C. Liu, D. M. Chen, G. Q. Lu and H. M. Cheng, J. Alloys Compd., 414(1), 259 (2006).

    CAS  Google Scholar 

  64. Y. Liu, J. Zou, X. Zeng, X. Wu, H. Tian, W. Ding, J. Wang and A. Walter, Int. J. Hydrogen Energy, 38(13), 5302 (2013).

    CAS  Google Scholar 

  65. R. Gosalawit-Utke, C. Milanese, P. Javadian, J. Jepsen, D. Laipple, F. Karmi, J. Puszkiel, T. R. Jensen, A. Marini, T. Klassen and M. Dornheim, Int. J. Hydrogen Energy, 38(8), 3275 (2013).

    CAS  Google Scholar 

  66. M. Dieterich, C. Pohlmann, I. Bürger, M. Linder and L. Röntzsch, Int. J. Hydrogen Energy, 40(46), 16375 (2015).

    CAS  Google Scholar 

  67. Y. Li, G. Zhou, F. Fang, X. Yu, Q. Zhang, L. Ouyang, M. Zhu and D. Sun, Acta Mater., 59(4), 1829 (2011).

    CAS  Google Scholar 

  68. L. F. Wan, E. S. Cho, T. Marangoni, P. Shea, S. Kang, C. Rogers, E. Zaia, R. R. Cloke, B. C. Wood, F. R. Fischer, J. J. Urban and D. Prendergast, Chem. Mater., 31(8), 2960 (2019).

    CAS  Google Scholar 

  69. J. Zhang, Y. Zhu, X. Zang, Q. Huan, W. Su, D. Zhu and L. Li, J. Mater. Chem. A, 4(7), 2560 (2016).

    CAS  Google Scholar 

  70. S. Kim, H. Song and C. Kim, Anal. Sci. Technol., 31(1), 1 (2018).

    Google Scholar 

  71. H. Wang, S. F. Zhang, J. W. Liu, L. Z. Ouyang and M. Zhu, Mater. Chem. Phys., 136(1), 146 (2012).

    CAS  Google Scholar 

  72. G. Liu, Y. Wang, F. Qiu, L. Li, L. Jiao and H. Yuan, J. Mater. Chem., 22(42), 22542 (2012).

    CAS  Google Scholar 

  73. J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 128(4), 1304 (2006).

    CAS  PubMed  Google Scholar 

  74. X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R. Champness and M. Schröder, J. Am. Chem. Soc., 131(6), 2159 (2009).

    CAS  PubMed  Google Scholar 

  75. D.-W. Lim, J. W. Yoon, K. Y. Ryu and M. P. Suh, Angew. Chem. Int. Ed., 51(39), 9814 (2012).

    CAS  Google Scholar 

  76. R. K. Bhakta, S. Maharrey, V. Stavila, A. Highley, T. Alam, E. Majzoub and M. Allendorf, Phys. Chem. Chem. Phys., 14(22), 8160 (2012).

    CAS  PubMed  Google Scholar 

  77. A. S. Awad, M. Nakhl, M. Zakhour, S. F. Santos, F. L. Souza and J. L. Bobet, J. Alloys Compd., 676, 1 (2016).

    CAS  Google Scholar 

  78. S. S. Shinde, D. H. Kim, J. Y. Yu and J. H. Lee, Nanoscale, 9(21), 7094 (2017).

    CAS  PubMed  Google Scholar 

  79. V. Berube, G. Chen and M. S. Dresselhaus, Int. J. Hydrogen Energy, 33(15), 4122 (2008).

    CAS  Google Scholar 

  80. S. Zhang, A. F. Gross, S. L. Van Atta, M. Lopez, P. Liu, C. C. Ahn, J. J. Vajo and C. M. Jensen, Nanotechnology, 20(20), 204027 (2009).

    PubMed  Google Scholar 

  81. A. Ampoumogli, T. Steriotis, P. Trikalitis, E. G. Bardaji, M. Fichtner, A. Stubos and G. Charalambopoulou, Int. J. Hydrogen Energy, 37(21), 16631 (2012).

    CAS  Google Scholar 

  82. W. Li, C. Li, H. Ma and J. Chen, J. Am. Chem. Soc., 129(21), 6710 (2007).

    CAS  PubMed  Google Scholar 

  83. C. Zhou, Z. Z. Fang and R. C. Bowman, J. Phys. Chem. C, 119(39), 22261 (2015).

    CAS  Google Scholar 

  84. C. Zhou, Z. Z. Fang, R. C. Bowman, Y. Xia, J. Lu, X. Luo and Y. Ren, J. Phys. Chem. C, 119(39), 22272 (2015).

    CAS  Google Scholar 

  85. A. M. Ruminski, R. Bardhan, A. Brand, S. Aloni and J. J. Urban, Energy Environ. Sci., 6(11), 3267 (2013).

    CAS  Google Scholar 

  86. J.-J. Liang and W. C. P. Kung, J. Phys. Chem. B, 109(38), 17837 (2005).

    CAS  PubMed  Google Scholar 

  87. J. Yuan, Y. Zhu, Y. Li, L. Zhang and L. Li, Int. J. Hydrogen Energy, 39(19), 10184 (2014).

    CAS  Google Scholar 

  88. Y. Wang, L. Li, C. An, Y. Wang, C. Chen, L. Jiao and H. Yuan, Nanoscale, 6(12), 6684 (2014).

    CAS  PubMed  Google Scholar 

  89. C. P. Baldé, B. P. C. Hereijgers, J. H. Bitter and K. P. de Jong, Angew. Chem. Int. Ed., 45(21), 3501 (2006).

    Google Scholar 

  90. P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araújo, R. H. Scheicher, R. Ahuja and P. Jena, Nano Lett., 9(4), 1501 (2009).

    CAS  PubMed  Google Scholar 

  91. R. D. Stephens, A. F. Gross, S. L. Van Atta, J. J. Vajo and F. E. Pinkerton, Nanotechnology, 20(20), 204018 (2009).

    PubMed  Google Scholar 

  92. J. Gao, P. Adelhelm, M. H. W. Verkuijlen, C. Rongeat, M. Herrich, P. J. M. van Bentum, O. Gutfleisch, A. P. M. Kentgens, K. P. de Jong and P. E. de Jongh, J. Phys. Chem. C, 114(10), 4675 (2010).

    CAS  Google Scholar 

  93. T. K. Nielsen, M. Polanski, D. Zasada, P. Javadian, F. Besenbacher, J. Bystrzycki, J. Skibsted and T. R. Jensen, ACS Nano, 5(5), 4056 (2011).

    CAS  PubMed  Google Scholar 

  94. L. Zang, W. Sun, S. Liu, Y. Huang, H. Yuan, Z. Tao and Y. Wang, ACS Appl. Mater. Interfaces, 10(23), 19598 (2018).

    CAS  PubMed  Google Scholar 

  95. Y. Jia, C. Sun, L. Cheng, M. A. Wahab, J. Cui, J. Zou, M. Zhu and X. Yao, Phys. Chem. Chem. Phys., 15(16), 5814 (2013).

    CAS  PubMed  Google Scholar 

  96. S. Shriniwasan, T. Kar, M. Neergat and S. S. V. Tatiparti, J. Phys. Chem. C, 122(39), 22389 (2018).

    CAS  Google Scholar 

  97. J. Cui, J. Liu, H. Wang, L. Ouyang, D. Sun, M. Zhu and X. Yao, J. Mater. Chem. A, 2(25), 9645 (2014).

    CAS  Google Scholar 

  98. X. Huang, X. Xiao, X. Wang, C. Wang, X. Fan, Z. Tang, C. Wang, Q. Wang and L. Chen, J. Phys. Chem. C, 122(49), 27973 (2018).

    CAS  Google Scholar 

  99. M. Lotoskyy, R. Denys, V. A. Yartys, J. Eriksen, J. Goh, S. N. Nyamsi, C. Sita and F. Cummings, J. Mater. Chem. A, 6(23), 10740 (2018).

    CAS  Google Scholar 

  100. Y. Liu, H. Du, X. Zhang, Y. Yang, M. Gao and H. Pan, Chem. Commun., 52(4), 705 (2016).

    Google Scholar 

  101. Z. Lan, L. Zeng, G. Jiong, X. Huang, H. Liu, N. Hua and J. Guo, Int. J. Hydrogen Energy, 44(45), 24849 (2019).

    CAS  Google Scholar 

  102. B. P. Tarasov, A. A. Arbuzov, S. A. Mozhzhuhin, A. A. Volodin, P. V. Fursikov, M. V. Lototskyy and V. A. Yartys, Int. J. Hydrogen Energy, 44(55), 29212 (2019).

    CAS  Google Scholar 

  103. R. Xiong, G. Sang, G. Zhang, X. Yan, P. Li, Y. Yao, D. Luo, C. A. Chen and T. Tang, Int. J. Hydrogen Energy, 42(9), 6088 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Energy Joint R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20188520000570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Seon Cho.

Additional information

Eun Seon Cho is an Assistant Professor of Chemical and Biomolecular Engineering at Korea Advanced Institute of Science and Technology (KAIST). She obtained B.S. and M.S. degree in Materials Science and Engineering from Seoul National University and received her Ph.D. in Materials Science and Engineering in 2013 from Massachusetts Institute of Technology (MIT). She worked as a postdoctoral research fellow at Lawrence Berkeley National Lab from 2013 to 2017. Her works in the area of hydrogen storage focus on the development of nanostructured metal hydrides to enhance the hydrogen release and absorption properties. Her major research interests include the design and synthesis of functional hybrid nanomaterials with organic and inorganic building blocks for energy and environmental applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D.J., Bang, K.R., Cho, H. et al. Effect of carbon nanoscaffolds on hydrogen storage performance of magnesium hydride. Korean J. Chem. Eng. 37, 1306–1316 (2020). https://doi.org/10.1007/s11814-020-0630-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0630-2

Keywords

Navigation