Skip to main content
Log in

GeO2/ZnWO4@CNT nanocomposite as a novel anode material for lithium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotube (SWCNT) wrapped GeO2/ZnWO4 nanocomposite was prepared by single-step solvothermal method. In this work, GeO2/ZnWO4 nanocomposites were prepared by varying the molar percentage of GeO2 and by further adding SWCNT for the composite to boost the electrochemical performance. The prepared GeO2/ZnWO4 nanocomposites and GeO2/ZnWO4@CNT nanocomposite are used as anode material for lithium-ion battery (LIB). As expected, GeO2/ZnWO4@CNT nanocomposite exhibits higher capacities and good rate capability than the GeO2/ZnWO4 nanocomposite. The GeO2/ZnWO4@CNT nanocomposite exhibits 930 mAh g−1 discharge capacity and 533 mAh g−1 charge capacity for the initial cycle at 100 mAh g−1 in the voltage range of 0.01–3 V (vs. Li+/Li). Even at high current density of 500 mAh g−1, GeO2/ZnWO4@CNT nanocomposite shows 231 mAh g−1 and 257 mAh g−1 charge/discharge capacity which are higher than that of GeO2/ZnWO4 nanocomposite. The GeO2/ZnWO4@CNT nanocomposite delivers 75.8% capacity retention and 100% coulombic efficiency even after 400 cycles at 300 mAh g−1. These results direct that GeO2/ZnWO4@CNT nanocomposite is a good negative electrode for lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Writer B (2019) Anode materials, SEI, carbon, graphite, conductivity, graphene, reversible, formation. In: Lithium-Ion Batteries: A Machine-Generated Summary of Current Research. Springer International Publishing, Cham, pp 1–71. https://doi.org/10.1007/978-3-030-16800-1_1

    Chapter  Google Scholar 

  2. Sreejesh M, Shenoy S, Sridharan K, Kufian D, Arof AK, Nagaraja HS (2017) Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications. Appl Surf Sci 410:336–343. https://doi.org/10.1016/j.apsusc.2017.02.246

    Article  CAS  Google Scholar 

  3. Zhang J, Yu A (2015) Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci Bull 60(9):823–838. https://doi.org/10.1007/s11434-015-0771-6

    Article  CAS  Google Scholar 

  4. Fang S, Bresser D, Passerini S (2020) Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv Energy Mater 10(1):1902485. https://doi.org/10.1002/aenm.201902485

    Article  CAS  Google Scholar 

  5. Beitollahi H, Movahedifar F, Tajik S, Jahani S (2019) A review on the effects of introducing CNTs in the modification process of electrochemical sensors. Electroanalysis 31(7):1195–1203. https://doi.org/10.1002/elan.201800370

    Article  CAS  Google Scholar 

  6. Wang L, Han J, Kong D, Tao Y, Yang Q-H (2019) Enhanced roles of carbon architectures in high-performance lithium-ion batteries. Nano-Micro Lett 11(1):5. https://doi.org/10.1007/s40820-018-0233-1

    Article  CAS  Google Scholar 

  7. Deng X, Li J, Ma L, Sha J, Zhao N (2019) Three-dimensional porous carbon materials and their composites as electrodes for electrochemical energy storage systems. Mater Chem Front 3(11):2221–2245. https://doi.org/10.1039/C9QM00425D

    Article  CAS  Google Scholar 

  8. Liu Y, Wang J, Xu Y, Zhu Y, Bigio D, Wang C (2014) Lithium–tellurium batteries based on tellurium/porous carbon composite. J Mater Chem A 2(31):12201–12207. https://doi.org/10.1039/C4TA02075H

    Article  CAS  Google Scholar 

  9. Gu X, Tang T, Liu X, Hou Y (2019) Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives. J Mater Chem A 7(19):11566–11583. https://doi.org/10.1039/C8TA12537F

    Article  CAS  Google Scholar 

  10. Zhou H, Li X, Li Y, Zheng M, Pang H (2019) Applications of MxSey (M = Fe, Co, Ni) and their composites in electrochemical energy storage and conversion. Nano-Micro Lett 11(1):40. https://doi.org/10.1007/s40820-019-0272-2

    Article  Google Scholar 

  11. Yue B, Hu Q, Ji L, Wang Y, Liu J (2019) Facile synthesis of perovskite CeMnO3 nanofibers as an anode material for high performance lithium-ion batteries. RSC Adv 9(65):38271–38279. https://doi.org/10.1039/C9RA07660C

    Article  CAS  Google Scholar 

  12. Zhang C, Wu C, Zhang Z, Shen Y, Liu W (2020) LaNiO3 as a novel anode for lithium-ion batteries. Trans Tianjin Univ 26(2):142–147. https://doi.org/10.1007/s12209-020-00232-0

    Article  CAS  Google Scholar 

  13. Wang J, Deng Q, Li M, Jiang K, Zhang J, Hu Z, Chu J (2017) Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications. Sci Rep 7(1):8903. https://doi.org/10.1038/s41598-017-09214-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Luo L, Li D, Zang J, Chen C, Zhu J, Qiao H, Cai Y, Lu K, Zhang X, Wei Q (2017) Carbon-coated magnesium ferrite nanofibers for lithium-ion battery anodes with enhanced cycling performance. Energy Technol 5(8):1364–1372. https://doi.org/10.1002/ente.201600686

    Article  CAS  Google Scholar 

  15. Wei G, Wei L, Wang D, Chen Y, Tian Y, Yan S, Mei L, Jiao J (2017) Reversible control of the magnetization of spinel ferrites based electrodes by lithium-ion migration. Sci Rep 7(1):12554. https://doi.org/10.1038/s41598-017-12948-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lin G, Wang H, Zhang L, Cheng Q, Gong Z, Ostrikov K (2019) Graphene nanowalls conformally coated with amorphous/ nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries. J Power Sources 437:226909. https://doi.org/10.1016/j.jpowsour.2019.226909

    Article  CAS  Google Scholar 

  17. Ulvestad A, Mæhlen JP, Kirkengen M (2018) Silicon nitride as anode material for Li-ion batteries: understanding the SiNx conversion reaction. J Power Sources 399:414–421. https://doi.org/10.1016/j.jpowsour.2018.07.109

    Article  CAS  Google Scholar 

  18. Ashuri M, He Q, Shaw LL (2016) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8(1):74–103. https://doi.org/10.1039/C5NR05116A

    Article  PubMed  CAS  Google Scholar 

  19. Liu Z, Yu Q, Zhao Y, He R, Xu M, Feng S, Li S, Zhou L, Mai L (2019) Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev 48(1):285–309. https://doi.org/10.1039/C8CS00441B

    Article  PubMed  CAS  Google Scholar 

  20. Domi Y, Usui H, Yamaguchi K, Yodoya S, Sakaguchi H (2019) Silicon-based anodes with long cycle life for lithium-ion batteries achieved by significant suppression of their volume expansion in ionic-liquid electrolyte. ACS Appl Mater Interfaces 11(3):2950–2960. https://doi.org/10.1021/acsami.8b17123

    Article  PubMed  CAS  Google Scholar 

  21. Silicon anode supported by carbon scaffold for high performance lithium ion micro-battery (2015). MEMS 2015:130

  22. de Guzman RC, Yang J, Ming-Cheng Cheng M, Salley SO, Ng KYS (2014) High capacity silicon nitride-based composite anodes for lithium ion batteries. J Mater Chem A 2(35):14577–14584. https://doi.org/10.1039/C4TA02596B

    Article  CAS  Google Scholar 

  23. Bhosale ME, Chae S, Kim JM, Choi J-Y (2018) Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. J Mater Chem A 6(41):19885–19911. https://doi.org/10.1039/C8TA04906H

    Article  CAS  Google Scholar 

  24. Zhou N, Dong H, Xu Y, Luo L, Zhao C, Wang D, Li H, Liu D (2018) Constructing inorganic/polymer microsphere composite as lithium ion battery anode material. Appl Surf Sci 433:806–814. https://doi.org/10.1016/j.apsusc.2017.10.125

    Article  CAS  Google Scholar 

  25. Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US (2016) Polymer-based organic batteries. Chem Rev 116(16):9438–9484. https://doi.org/10.1021/acs.chemrev.6b00070

    Article  PubMed  CAS  Google Scholar 

  26. Amin K, Mao L, Wei Z (2019) Recent progress in polymeric carbonyl-based electrode materials for lithium and sodium ion batteries. Macromol Rapid Commun 40(1):1800565. https://doi.org/10.1002/marc.201800565

    Article  CAS  Google Scholar 

  27. Li C, Hu X, Lou X, Chen Q, Hu B (2016) Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chem Commun 52(10):2035–2038. https://doi.org/10.1039/C5CC07151H

    Article  CAS  Google Scholar 

  28. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci Adv Mater Devices 1(3):225–255. https://doi.org/10.1016/j.jsamd.2016.08.001

    Article  Google Scholar 

  29. Shi N, Xiong S, Wu F, Bai J, Chu Y, Mao H, Feng J, Xi B (2017) Hydrothermal synthesis of ZnWO4 hierarchical hexangular microstars for enhanced lithium-storage properties. Eur J Inorg Chem 2017(3):734–740. https://doi.org/10.1002/ejic.201601225

    Article  CAS  Google Scholar 

  30. Shim H-W, Cho I-S, Hong KS, Lim A-H, Kim D-W (2011) Wolframite-type ZnWO4 nanorods as new anodes for Li-ion batteries. J Phys Chem C 115(32):16228–16233. https://doi.org/10.1021/jp204656v

    Article  CAS  Google Scholar 

  31. Xing L-L, Yuan S, He B, Zhao Y-Y, Wu X-L, Xue X-Y (2013) Synergistic effect of SnO2/ZnWO4 core–shell nanorods with high reversible lithium storage capacity. Chem Asian J 8(7):1530–1535. https://doi.org/10.1002/asia.201300337

    Article  PubMed  CAS  Google Scholar 

  32. Yoon S, Jung S-H, Jung K-N, Woo S-G, Cho W, Jo Y-N, Cho KY (2016) Preparation of nanostructured Ge/GeO2 composite in carbon matrix as an anode material for lithium-ion batteries. Electrochim Acta 188:120–125. https://doi.org/10.1016/j.electacta.2015.11.132

    Article  CAS  Google Scholar 

  33. Lim S-Y, Jang W, Yun S, Yoon W-S, Choi J-Y, Whang D (2019) Amorphous germanium oxide nanobubbles for lithium-ion battery anode. Mater Res Bull 110:24–31. https://doi.org/10.1016/j.materresbull.2018.10.007

    Article  CAS  Google Scholar 

  34. Wei W, Xu J, Xu M, Zhang S, Guo L (2018) Recent progress on Ge oxide anode materials for lithium-ion batteries. SCIENCE CHINA Chem 61(5):515–525. https://doi.org/10.1007/s11426-018-9244-0

    Article  CAS  Google Scholar 

  35. Wei W, Jia F, Qu P, Huang Z, Wang H, Guo L (2017) Morphology memory but reconstructing crystal structure: porous hexagonal GeO2 nanorods for rechargeable lithium-ion batteries. Nanoscale 9(11):3961–3968. https://doi.org/10.1039/C7NR00599G

    Article  PubMed  CAS  Google Scholar 

  36. Wang X-L, Han W-Q, Chen H, Bai J, Tyson TA, Yu X-Q, Wang X-J, Yang X-Q (2011) Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J Am Chem Soc 133(51):20692–20695. https://doi.org/10.1021/ja208880f

    Article  PubMed  CAS  Google Scholar 

  37. Li L, Yang H, Zhou D, Zhou Y (2014) Progress in application of CNTs in lithium-ion batteries. J Nanomater 2014:9. https://doi.org/10.1155/2014/187891

    Article  CAS  Google Scholar 

  38. Liu X-M, Zd H, Sw O, Zhang B, Ma P-C, Yuen MMF, Kim J-K (2012) Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos Sci Technol 72(2):121–144. https://doi.org/10.1016/j.compscitech.2011.11.019

    Article  CAS  Google Scholar 

  39. Wu GT (1999) Structure and lithium insertion properties of carbon nanotubes. J Electrochem Soc 146(5):1696–1701. https://doi.org/10.1149/1.1391828

    Article  CAS  Google Scholar 

  40. Liu B, Abouimrane A, Balasubramanian M, Ren Y, Amine K (2014) GeO2–SnCoC Composite anode material for lithium-ion batteries. J Phys Chem C 118(8):3960–3967. https://doi.org/10.1021/jp411462v

    Article  CAS  Google Scholar 

  41. Choi SH, Lee SJ, Kim HJ, Park SB, Choi JW (2018) Li2O–B2O3–GeO2 glass as a high performance anode material for rechargeable lithium-ion batteries. J Mater Chem A 6(16):6860–6866. https://doi.org/10.1039/C8TA00934A

    Article  CAS  Google Scholar 

  42. Brijesh K, Dhanush PC, Vinayraj S, Nagaraja HS (2020) Monoclinic Wolframite ZnWO4/SiO2 nanocomposite as an anode material for lithium ion battery. Mater Lett 275:128108. https://doi.org/10.1016/j.matlet.2020.128108

    Article  CAS  Google Scholar 

  43. Brijesh K, Vinayraj S, Dhanush PC, Bindu K, Nagaraja HS (2020) ZnWO4/SnO2@r-GO nanocomposite as an anode material for high capacity lithium ion battery. Electrochim Acta:136676. https://doi.org/10.1016/j.electacta.2020.136676

  44. Brijesh K, Nagaraja HS (2020) ZnWO4/r-GO nanocomposite as high capacity anode for lithium-ion battery. Ionics. 26(6):2813–2823. https://doi.org/10.1007/s11581-020-03480-1

    Article  CAS  Google Scholar 

  45. Brijesh K, Bindu K, Shanbhag D, Nagaraja HS (2019) Chemically prepared polypyrrole/ZnWO4 nanocomposite electrodes for electrocatalytic water splitting. Int J Hydrog Energy 44(2):757–767. https://doi.org/10.1016/j.ijhydene.2018.11.022

    Article  CAS  Google Scholar 

  46. Brijesh K, Nagaraja HS (2019) Lower band gap Sb/ZnWO4/r-GO nanocomposite based supercapacitor electrodes. J Electron Mater 48(7):4188–4195. https://doi.org/10.1007/s11664-019-07185-8

    Article  CAS  Google Scholar 

  47. Pereira PFS, Gouveia AF, Assis M, de Oliveira RC, Pinatti IM, Penha M, Gonçalves RF, Gracia L, Andrés J, Longo E (2018) ZnWO4 nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Phys Chem Chem Phys 20(3):1923–1937. https://doi.org/10.1039/C7CP07354B

    Article  PubMed  CAS  Google Scholar 

  48. Brijesh K, Bindu K, Amudha A, Nagaraja H (2019) Dual electrochemical application of r-GO wrapped ZnWO<sub>4</sub>/Sb nanocomposite. Mater Res Express

  49. Giri PK, Dhara S (2012) Freestanding Ge/GeO2 core-shell nanocrystals with varying sizes and shell thicknesses: microstructure and photoluminescence studies. J Nanomater 2012:6. https://doi.org/10.1155/2012/905178

    Article  CAS  Google Scholar 

  50. Wu M-S, Zheng Z-B, Lai Y-S, Jow J-J (2015) Nickel cobaltite nanograss grown around porous carbon nanotube-wrapped stainless steel wire mesh as a flexible electrode for high-performance supercapacitor application. Electrochim Acta 182:31–38. https://doi.org/10.1016/j.electacta.2015.09.049

    Article  CAS  Google Scholar 

  51. Venkataraman A, Amadi EV, Chen Y, Papadopoulos C (2019) Carbon nanotube assembly and integration for applications. Nanoscale Res Lett 14(1):220. https://doi.org/10.1186/s11671-019-3046-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kajita T, Itoh T (2016) Electrochemical performance of amorphous GeOx powder synthesized by oxidation of NaGe serving as an anode for lithium ion batteries. J Electrochem Soc 163(3):A552–A556. https://doi.org/10.1149/2.0931603jes

    Article  CAS  Google Scholar 

  53. Wei W, Tian A, Jia F, Wang K, Qu P, Xu M (2016) Green synthesis of GeO2/graphene composites as anode material for lithium-ion batteries with high capacity. RSC Adv 6(90):87440–87445. https://doi.org/10.1039/C6RA14819K

    Article  CAS  Google Scholar 

  54. Pei M, Wu Y, Qi Z, Mei D (2020) Synthesis and electrochemical performance of NiO/Fe3O4/rGO as anode material for lithium ion battery. Ionics. 26(8):3831–3840. https://doi.org/10.1007/s11581-020-03545-1

    Article  CAS  Google Scholar 

Download references

Acknowledgment

BK would like to thank SAIF Cochin for providing TEM Facility. HSN acknowledges DST-SERB project grant (No.SB/S2/CMP-105/2013) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Brijesh or H. S. Nagaraja.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brijesh, K., Nagaraja, H.S. GeO2/ZnWO4@CNT nanocomposite as a novel anode material for lithium-ion battery. J Solid State Electrochem 24, 2525–2533 (2020). https://doi.org/10.1007/s10008-020-04798-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04798-6

Keywords

Navigation