Skip to main content

Advertisement

Log in

Optimization of process parameters for preparation of hydroxyapatite by the sol–gel method

  • Original Paper: Fundamentals of sol-gel and hybrid materials processing
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) powder was prepared by a sol–gel method using Ca(NO3)2·4H2O and (NH4)2HPO4 as raw materials. The usage of preset parameters just mixing the two raw materials only produced Ca2P2O7 and β-Ca3(PO4)2, without any evidence of HA. Then, effects of the reactant concentration, dropping speed, pH value, and mechanical stirring time on the reaction products were studied, and the process parameters were optimized. Results show that the optimum condition for the preparation of HA powder could be obtained by adding Ca(NO3)2·4H2O, (NH4)2HPO4, and citric acid to the reaction base solution, in turn, adjusting the pH value of the reaction solution with concentrated nitric acid to 2.5 and stirring the reaction solution manually. The parameters of calcination process were optimized by DSC analysis, and the HA powder with good crystallinity was successfully prepared.

Highlights

  • Process parameters for preparation of hydroxyapatite (HA) by a sol–gel method were optimized.

  • Effects of the reactant concentration, dropping speed, pH value, and mechanical stirring time on the products were studied.

  • Large reactant concentrations and dropping speeds inhibited the formation of sol.

  • The pH value was determined to be 2.5, and manual stirring was an appropriate stirring method.

  • By the optimized parameters, HA powder with good crystallinity was successfully prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Suchanek W, Yoshimura M (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 13:94–117

    Article  CAS  Google Scholar 

  2. Cheng H, Sun Y, An S, Qiao J (2017) Progress on synthesis and application of hydroxyapatite. J Synth Cryst 46:1740–1747

    CAS  Google Scholar 

  3. Xu J, Wu J, Wang X, Wang X, Han Q (2016) Development of several biomimetic scaffold in bone tissue engineering. Orthop Biomech Mater Clin Stud 13:63–66

    CAS  Google Scholar 

  4. Guo L, Xin H, Luo XD, Zhang CL (2020) Phase evolution, mechanical properties and MRI contrast behavior of GdPO4 doped hydroxyapatite for dental applications. Mater Sci Eng C 111:110858

    Article  CAS  Google Scholar 

  5. Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781

    Article  CAS  Google Scholar 

  6. Ai F, Chen L, Yan J, Yang K, Li S, Duan H, Cao C, Li W, Zhou K (2020) Hydroxyapatite scaffolds containing copper for bone tissue engineering. J Sol-Gel Sci Technol 95:168–179

    Article  CAS  Google Scholar 

  7. Chen T, Fu H, Li Y, Fu B (2019) Research progress of hydroxyapatite-based composite bone repair materials. Chin Pharm Aff 33:302–309

    Google Scholar 

  8. Bernard L, Freche M, Lacout JL, Biscans B (1999) Preparation of hydroxyapatite by neutralization at low temperature—influence of purity of the raw material. Powder Technol 103:19–25

    Article  CAS  Google Scholar 

  9. Bensalah H, Bekheet MF, Younssi S, Ouammou M, Gurlo A (2018) Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. J Environ Chem Eng 6:1347–1352

    Article  CAS  Google Scholar 

  10. Kuśnieruk S, Wojnarowicz J, Chodara A, Chudoba T, Gierlotka S, Lojkowski W (2016) Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles. Beilstein J Nanotechnol 7:1586–1601

    Article  Google Scholar 

  11. Afshar A, Ghorbani M, Ehsani N, Saeri MR, Sorrell CC (2003) Some important factors in the wet precipitation process of hydroxyapatite. Mater Des 24:197–202

    Article  CAS  Google Scholar 

  12. Young RA, Holcomb DW (1982) Variability of hydroxyapatite preparations. Calcif Tissue Int 34:S17–S32

    Google Scholar 

  13. Korber F, Tromel GZ (1932) The formation of HAP through a solid state reaction between tri and tetra-calcium phosphates. J Electrochem Soc 38:578–580

    CAS  Google Scholar 

  14. Guo X, Yan H, Zhao S, Zhang L, Li Y, Liang X (2013) Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature. Adv Powder Technol 24:1034–1038

    Article  CAS  Google Scholar 

  15. Ota Y, Iwashita T, Kasuga T, Abe Y (1998) Novel preparation method of hydroxyapatite fibers. J Am Ceram Soc 81:1665–1668

    Article  CAS  Google Scholar 

  16. Kong LB, Ma J, Boey F (2002) Nanosized hydroxyapatite powders derived from coprecipitation process. J Mater Sci 37:1131–1134

    Article  CAS  Google Scholar 

  17. Lee IH, Lee JA, Lee JH, Heo YW, Kim JJ (2020) Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation. J Korean Ceram Soc 57:56–64

    Article  CAS  Google Scholar 

  18. Mobasherpour I, Salahi E (2011) Effect of heat treatment on grain growth of nanocrystalline hydroxyapatite powder. J Ceram Sci Technol 2:119–124

    Google Scholar 

  19. Zhao XX, Guo L, Wang CM, Zhang Y, Ye FX (2017) Effect of phase structure evolution on thermal expansion and toughness of (Nd1-xScx)2Zr2O7 (x=0, 0.025, 0.05, 0.075, 0.1) ceramics. J Mater Sci Technol 33:192–197

    Article  Google Scholar 

  20. Wang Q, Guo L, Yan Z, Ye FX (2018) Phase composition, thermal conductivity, and toughness of TiO2-doped, Er2O3-stabilized ZrO2 for thermal barrier coating applications. Coatings 8:8070253

    Google Scholar 

  21. Verwilghen C, Chkir M, Rio S, Nzihou A, Sharrock P, Depelsenaire G (2009) Convenient conversion of calcium carbonate to hydroxyapatite at ambient pressure. Mater Sci Eng C 29:771–773

    Article  CAS  Google Scholar 

  22. Neira IS, Kolen’ko YV, Lebedev OI, Gustaaf VT, Gupta HS, Guitian F, Yoshimura M (2009) An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Cryst Growth Des 9:466–474

    Article  CAS  Google Scholar 

  23. Nagata F, Yamauchi Y, Tomita M, Kato K (2013) Hydrothermal synthesis of hydroxyapatite nanoparticles and their protein adsorption behavior. J Ceram Soc Jpn 121:797–801

    Article  CAS  Google Scholar 

  24. Belmamouni Y, Bricha M, Ferreira J, El Mabrouk K (2015) Hydrothermal synthesis of Si-doped hydroxyapatite nanopowders: mechanical and bioactivity evaluation. Int J Appl Ceram Technol 12:329–340

    Article  CAS  Google Scholar 

  25. Sadat-Shojai M, Khorasani MT, Jamshidi A, Dinpanah-Khoshdargi E (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621

    Article  CAS  Google Scholar 

  26. Kalita S, Bhardwaj A, Bhatt H (2007) Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 27:441–449

    Article  CAS  Google Scholar 

  27. Fathi MH, Hanifi A, Mortazavi V (2008) Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol 202:536–542

    Article  CAS  Google Scholar 

  28. Phatai P, Futalan CM, Kamonwannasit S, Khemthong P (2019) Structural characterization and antibacterial activity of hydroxyapatite synthesized via sol-gel method using glutinous rice as a template. J Sol-Gel Sci Technol 89:764–775

    Article  CAS  Google Scholar 

  29. Chung R, Hsieh M, Huang K, Perng L, Chou F, Chin T (2005) Anti-microbial hydroxyapatite particles synthesized by a sol–gel route. J Sol-Gel Sci Technol 33:229–239

    Article  CAS  Google Scholar 

  30. Vijayalakshmi U, Rajeswari S (2012) Influence of process parameters on the sol–gel synthesis of nano hydroxyapatite using various phosphorus precursors. J Sol-Gel Sci Technol 63:45–55

    Article  CAS  Google Scholar 

  31. Simon V, Lazar D, Turcu R, Mocuta H, Magyari K, Prinz M, Neumann M, Simon S (2009) Atomic environment in sol–gel derived nanocrystalline hydroxyapatite. Mater Sci Eng B 165:247–251

    Article  CAS  Google Scholar 

  32. Kaygili O, Tatar C (2012) The investigation of some physical properties and microstructure of Zn-doped hydroxyapatite bioceramics prepared by sol–gel method. J Sol-Gel Sci Technol 61:296–309

    Article  CAS  Google Scholar 

  33. Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method. Mater Lett 61:3978–3983

    Article  CAS  Google Scholar 

  34. AlHammad MS (2016) Nanostructure hydroxyapatite based ceramics by sol gel method. J Alloy Compd 661:251–256

    Article  CAS  Google Scholar 

  35. Liu DM, Yang Q, Troczynski T, Tseng WJ (2002) Structural evolution of sol–gel-derived hydroxyapatite. Biomaterials 23:1679–1687

    Article  CAS  Google Scholar 

  36. Wang F, Li M, Lu Y, Qi Y (2005) A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 59:916–919

    Article  CAS  Google Scholar 

  37. Bezzi G, Gelotti G, Landi E (2003) A novel sol-gel technique for hydroxyapatite preparation. Mater Chem Phys 78:816–824

    Article  CAS  Google Scholar 

  38. Kivrak N, Tas AC (1998) Synthesis of calcium hydroxyapatite–tricalcium phosphate (HA–TCP) composite bioceramic powders and their sintering behavior. J Am Ceram Soc 81:2245–2252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the National Natural Science Foundation of China (Grant No. 51971156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Li, B. & Zhang, C. Optimization of process parameters for preparation of hydroxyapatite by the sol–gel method. J Sol-Gel Sci Technol 96, 247–255 (2020). https://doi.org/10.1007/s10971-020-05381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05381-1

Keyword

Navigation