Skip to main content
Log in

Self-healing Polyurethane Elastomer Based on Molecular Design: Combination of Reversible Hydrogen Bonds and High Segment Mobility

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polyurethane (PU) belongs to a class of special polymeric materials with hydrogen bonds, which has the potential for self-healing ability. In the present work, by introducing polypropylene glycol (PPG) blocks with high segment mobility and different block lengths on the ends of PU chains, the PUs with adjustable self-healing ability were successfully obtained. The self-healing ability of the PUs firstly increases with the increase of the PPG block lengths, but then decreases. This phenomenon can be attributed to the combined effects of the density of hydrogen bonds and the mobility of PPG segments. At first, the increase of the PPG block length leads to the improvement of mobility of PU chains, which is beneficial for the enhancement of the self-healing. However, the further increase of the PPG block length results in the reduction in the hydrogen bond density, finally leading to the decrease of the self-healing ability of the PUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Cordier, F. Tournilhac, C. Soulieziakovic, L. Leibler, Nature 451, 977–980 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. V.K. Thakur, M.R. Kessler, Polymer 69, 369–383 (2015)

    Article  CAS  Google Scholar 

  3. J. Dahlke, S. Zechel, M.D. Hager, U.S. Schubert, Adv. Mater. Interfaces 5, 1800051 (2018)

    Article  Google Scholar 

  4. J. Wu, L.H. Cai, D.A. Weitz, Adv. Mater. 29, 1702616 (2017)

    Article  CAS  Google Scholar 

  5. H. Wang, H. Liu, Z. Cao, W. Li, X. Huang, Y. Zhu, F. Ling, H. Xu, Q. Wu, Y. Peng, B. Yang, R. Zhang, O. Kessler, G. Huang, J. Wu, Proc. Natl. Acad. Sci. USA 117, 11299–11305 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. L. Liu, L. Zhu, L. Zhang, Macromol. Chem. Phys. 219, 1700409 (2018)

    Article  CAS  Google Scholar 

  7. J. Liu, J. Liu, S. Wang, J. Huang, S. Wu, Z. Tang, B. Guo, L. Zhang, J. Mater. Chem. A 5, 25660–25671 (2017)

    Article  CAS  Google Scholar 

  8. Q. Zhang, S. Niu, L. Wang, J. Lopez, S. Chen, Y. Cai, R. Du, Y. Liu, J. Lai, L. Liu, C. Li, X. Yan, C. Liu, J.B.H. Tok, X. Jia, Z. Bao, Adv. Mater. 30, 1801435 (2018)

    Article  CAS  Google Scholar 

  9. Y. Liu, Q. Zhou, Y. Nie, Z. Zhou, Z. Liang, J. Inorg. Organomet. Polym. 30, 337–348 (2020)

    Article  CAS  Google Scholar 

  10. Y. Liu, Y. Wei, R. Liu, Z. Liang, J. Yang, R. Zhang, Z. Zhou, Y. Nie, J. Inorg. Organomet. Polym. 30, 1553–1565 (2020)

    Article  CAS  Google Scholar 

  11. Y. Wei, H. Wu, G. Weng, Y. Zhang, X. Cao, Z. Gu, Y. Liu, R. Liu, Z. Zhou, Y. Nie, J. Polym. Res. 25, 173 (2018)

    Article  CAS  Google Scholar 

  12. Y. Nie, Z. Gu, Y. Wei, T. Hao, Z. Zhou, Polym. J. 49, 309–317 (2017)

    Article  CAS  Google Scholar 

  13. Y. Nie, J. Polym. Res. 22, 1 (2015)

    Article  CAS  Google Scholar 

  14. N. Hannewald, M. Enke, I. Nischang, S. Zechel, M.D. Hager, U.S. Schubert, J. Inorg. Organomet. Polym. 30, 230–242 (2020)

    Article  CAS  Google Scholar 

  15. J. Brassinne, C. Fustin, J. Gohy, J. Inorg. Organomet. Polym. 23, 24–40 (2013)

    Article  CAS  Google Scholar 

  16. Z.S. Petrović, J. Ferguson, Prog. Polym. Sci. 16, 695–836 (1991)

    Article  Google Scholar 

  17. D.K. Chattopadhyay, K.V. Raju, Prog. Polym. Sci. 32, 352–418 (2007)

    Article  CAS  Google Scholar 

  18. L. Meng, X. Shi, R. Zhang, L. Yan, Z. Liang, Y. Nie, Z. Zhou, T. Hao, J. Appl. Polym. Sci. (2020). https://doi.org/10.1002/app.49314

    Article  Google Scholar 

  19. Y. Xu, D. Chen, Macromol. Chem. Phys. 217, 1191–1196 (2016)

    Article  CAS  Google Scholar 

  20. Y. Fang, X. Du, Y. Jiang, Z. Du, P. Pan, X. Cheng, H. Wang, ACS Sustain. Chem. Eng. 6, 14490–14500 (2018)

    Article  CAS  Google Scholar 

  21. Y. Lin, G. Li, J. Mater. Chem. B 2, 6878–6885 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Song, Y. Liu, T. Qi, G. Li, Angew. Chem. Int. Ed. 57, 13838–13842 (2018)

    Article  CAS  Google Scholar 

  23. H. Daemi, S. Rajabi-Zeleti, H. Sardon, M. Barikani, A. Khademhosseini, H. Baharvand, Biomaterials 84, 54–63 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Z. Wang, C. Xie, C. Yu, G. Fei, Z. Wang, H. Xia, Macromol. Rapid Commun. 39, 1700678 (2018)

    Article  CAS  Google Scholar 

  25. L. Feng, Z. Yu, Y. Bian, J. Lu, X. Shi, C. Chai, Polymer 124, 48–59 (2017)

    Article  CAS  Google Scholar 

  26. L. Zhang, Z. Liu, X. Wu, Q. Guan, S. Chen, L. Sun, Y. Guo, S. Wang, J. Song, E.M. Jeffries, C. He, F.L. Qing, X. Bao, Z. You, Adv. Mater. 31, 1901402 (2019)

    Article  CAS  Google Scholar 

  27. K. Yu, A. Xin, H. Du, Y. Li, Q. Wang, NPG Asia Mater. 11, 7 (2019)

    Article  CAS  Google Scholar 

  28. Y. Liu, Z. Li, R. Liu, Z. Liang, J. Yang, R. Zhang, Z. Zhou, Y. Nie, Ind. Eng. Chem. Res. 58, 14848–14858 (2019)

    Article  CAS  Google Scholar 

  29. X. Wu, J. Wang, J. Huang, S. Yang, J. Colloid Interface Sci. 559, 152–161 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Lai, X. Kuang, P. Zhu, M. Huang, X. Dong, D. Wang, Adv. Mater. 30, e1802556 (2018)

    Article  PubMed  CAS  Google Scholar 

  31. G. Trovati, E.A. Sanches, S.C. Neto, Y.P. Mascarenhas, G.O. Chierice, J. Appl. Polym. Sci. 115, 263–268 (2010)

    Article  CAS  Google Scholar 

  32. J.T. Garrett, R. Xu, J. Cho, J. Runt, J.T. Garrett, Polymer 44, 2711–2719 (2003)

    Article  CAS  Google Scholar 

  33. X. Chen, L. Huo, C. Jiao, S. Li, J. Anal. Appl. Pyrol. 100, 186–191 (2013)

    Article  CAS  Google Scholar 

  34. B. Wu, Z. Liu, Y. Lei, Y. Wang, Q. Liu, A. Yuan, Y. Zhao, X. Zhang, J. Lei, Polymer 186, 122003 (2019)

    Article  CAS  Google Scholar 

  35. J. Liu, Q. Liu, X. Zheng, R. Liu, Q. Mu, X. Liu, Polym. Bull. 73, 647–659 (2016)

    Article  CAS  Google Scholar 

  36. X. Wang, Y. Fu, P. Guo, L. Ren, H. Wang, T. Qiang, J. Appl. Polym. Sci. 130, 2671–2679 (2013)

    Article  CAS  Google Scholar 

  37. P. Pawłowski, G. Rokicki, Polymer 45, 3125–3137 (2004)

    Article  CAS  Google Scholar 

  38. A. Prabhakar, D.K. Chattopadhyay, B. Jagadeesh, K.V.S.N. Rsju, J. Polym. Sci. Part A: Polym. Chem. 43, 1196–1209 (2005)

    Article  CAS  Google Scholar 

  39. W.B. Hu, Polymer Physics a Molecular Approach (Springer, Vienna, 2013)

    Book  Google Scholar 

  40. B. Ghobadi Jola, B. Shirkavand Hadavand, K. Didehban, A. Mirshokraie, J. Inorg. Organomet. Polym. 28, 92–101 (2018)

    Article  CAS  Google Scholar 

  41. M.C. Luo, J. Zeng, Z.T. Xie, L.Y. Wei, G. Huang, J. Wu, Polymer 105, 221–226 (2016)

    Article  CAS  Google Scholar 

  42. G.P. Johari, A. Hallbrucker, E. Mayer, J. Polym. Sci. Part B: Polym. Phys. 26, 1923–1930 (1988)

    Article  CAS  Google Scholar 

  43. J. Bao, G. Shi, C. Tao, C. Wang, C. Zhu, L. Cheng, G. Qian, C. Chen, J. Power Sources 389, 84–92 (2018)

    Article  CAS  Google Scholar 

  44. S. Schäfer, G. Kickelbick, Polymer 69, 357–368 (2015)

    Article  CAS  Google Scholar 

  45. Y. Yang, M.W. Urban, Chem. Soc. Rev. 42, 7446–7467 (2013)

    Article  CAS  PubMed  Google Scholar 

  46. R. Du, Z. Xu, C. Zhu, Y. Jiang, H. Yan, H. Wu, O. Vardoulis, Y. Cai, X. Zhu, Z. Bao, Q. Zhang, X. Jia, Adv. Funct. Mater. 30, 1907139 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 21404050). Hao also thanks the supports from Postdoctoral Science Foundation of China (No. 2019M651478), Natural Science Foundation of Jiangsu Province (No. BK20190866) and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 18KJB150009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yijing Nie or Songjun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Huang, D., Zhao, L. et al. Self-healing Polyurethane Elastomer Based on Molecular Design: Combination of Reversible Hydrogen Bonds and High Segment Mobility. J Inorg Organomet Polym 31, 683–694 (2021). https://doi.org/10.1007/s10904-020-01697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01697-1

Keywords

Navigation