Skip to main content

Advertisement

Log in

Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products

  • Metabolic Engineering and Synthetic Biology - Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Microbial fermentation platforms offer a cost-effective and sustainable alternative to plant cultivation and chemical synthesis for the production of many plant-derived pharmaceuticals. Plant alkaloids, particularly benzylisoquinoline alkaloids and monoterpene indole alkaloids, and recently cannabinoids have become attractive targets for microbial biosynthesis owing to their medicinal importance. Recent advances in the discovery of pathway components, together with the application of synthetic biology tools, have facilitated the assembly of plant alkaloid and cannabinoid pathways in the microbial hosts Escherichia coli and Saccharomyces cerevisiae. This review highlights key aspects of these pathways in the framework of overcoming bottlenecks in microbial production to further improve end-product titers. We discuss the opportunities that emerge from a better understanding of the pathway components by further study of the plant, and strategies for generation of new and advanced medicinal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization (2019) WHO model list of essential medicines, 21th list

  3. Martino E, Casamassima G, Castiglione S et al (2018) Vinca alkaloids and analogues as anti-cancer agents: looking back, peering ahead. Bioorg Med Chem Lett 28:2816–2826. https://doi.org/10.1016/j.bmcl.2018.06.044

    Article  CAS  PubMed  Google Scholar 

  4. Andre CM, Hausman J-F, Guerriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 7:19

    Article  Google Scholar 

  5. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367. https://doi.org/10.1038/nrmicro3240

    Article  CAS  PubMed  Google Scholar 

  6. Singh A, Menéndez-Perdomo IM, Facchini PJ (2019) Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update. Phytochem Rev 18:1457–1482. https://doi.org/10.1007/s11101-019-09644-w

    Article  CAS  Google Scholar 

  7. Pyne ME, Narcross L, Martin VJJ (2019) Engineering plant secondary metabolism in microbial systems. Plant Physiol 179:844–861. https://doi.org/10.1104/pp.18.01291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cravens A, Payne J, Smolke CD (2019) Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-09848-w

    Article  CAS  Google Scholar 

  9. Chen R, Yang S, Zhang L, Zhou YJ (2020) Advanced strategies for production of natural products in yeast. iScience 23:100879. https://doi.org/10.1016/j.isci.2020.100879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Birchfield AS, McIntosh CA (2020) Metabolic engineering and synthetic biology of plant natural products—a minireview. Curr Plant Biol. https://doi.org/10.1016/j.cpb.2020.100163

    Article  Google Scholar 

  11. Facchini PJ, Park S-U (2003) Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry 64:177–186. https://doi.org/10.1016/S0031-9422(03)00292-9

    Article  CAS  PubMed  Google Scholar 

  12. Ounaroon A, Decker G, Schmidt J et al (2003) (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum – cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36:808–819. https://doi.org/10.1046/j.1365-313X.2003.01928.x

    Article  CAS  PubMed  Google Scholar 

  13. Frick S, Kramell R, Kutchan TM (2007) Metabolic engineering with a morphine biosynthetic P450 in opium poppy surpasses breeding. Metab Eng 9:169–176. https://doi.org/10.1016/j.ymben.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  14. Ziegler J, Diaz-Chávez ML, Kramell R et al (2005) Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis. Planta 222:458–471. https://doi.org/10.1007/s00425-005-1550-4

    Article  CAS  PubMed  Google Scholar 

  15. Farrow SC, Hagel JM, Beaudoin GAW et al (2015) Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat Chem Biol 11:728–732. https://doi.org/10.1038/nchembio.1879

    Article  CAS  PubMed  Google Scholar 

  16. Winzer T, Kern M, King AJ et al (2015) Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science 349:309–312. https://doi.org/10.1126/science.aab1852

    Article  CAS  PubMed  Google Scholar 

  17. Gesell A, Rolf M, Ziegler J et al (2009) CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy. J Biol Chem 284:24432–24442. https://doi.org/10.1074/jbc.M109.033373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ziegler J, Voigtländer S, Schmidt J et al (2006) Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis. Plant J 48:177–192. https://doi.org/10.1111/j.1365-313X.2006.02860.x

    Article  CAS  PubMed  Google Scholar 

  19. Lenz R, Zenk MH (1995) Acetyl coenzyme A:salutaridinol-7-O-acetyltransferase from Papaver somniferum plant cell cultures. J Biol Chem 270:31091–31096. https://doi.org/10.1074/jbc.270.52.31091

    Article  CAS  PubMed  Google Scholar 

  20. Grothe T, Lenz R, Kutchan TM (2001) Molecular characterization of the salutaridinol 7-O-Acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum. J Biol Chem 276:30717–30723. https://doi.org/10.1074/jbc.M102688200

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Hagel JM, Chang L et al (2018) A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis article. Nat Chem Biol 14:738–743. https://doi.org/10.1038/s41589-018-0059-7

    Article  CAS  PubMed  Google Scholar 

  22. Lee E-J, Facchini P (2010) Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell 22:3489–3503. https://doi.org/10.1105/tpc.110.077958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hagel JM, Facchini PJ (2010) Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol 6:273–275. https://doi.org/10.1038/nchembio.317

    Article  CAS  PubMed  Google Scholar 

  24. Unterlinner B, Lenz R, Kutchan TM (1999) Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J 18:465–475. https://doi.org/10.1046/j.1365-313X.1999.00470.x

    Article  CAS  PubMed  Google Scholar 

  25. Dastmalchi M, Chen X, Hagel JM et al (2019) Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nat Chem Biol 15:384–390. https://doi.org/10.1038/s41589-019-0247-0

    Article  CAS  PubMed  Google Scholar 

  26. Dastmalchi M, Chang L, Torres MA et al (2018) Codeinone reductase isoforms with differential stability, efficiency and product selectivity in opium poppy. Plant J 95:631–647. https://doi.org/10.1111/tpj.13975

    Article  CAS  Google Scholar 

  27. Thodey K, Galanie S, Smolke CD (2014) A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 10:837–844. https://doi.org/10.1038/nchembio.1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galanie S, Thodey K, Trenchard IJ et al (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100. https://doi.org/10.1126/science.aac9373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci USA 112:3205–3210. https://doi.org/10.1073/pnas.1423555112

    Article  CAS  PubMed  Google Scholar 

  30. Qu Y, Easson MEAM, Simionescu R et al (2018) Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proc Natl Acad Sci USA 115:3180–3185. https://doi.org/10.1073/pnas.1719979115

    Article  CAS  PubMed  Google Scholar 

  31. Qu Y, Easson MLAE, Froese J et al (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci USA 112:6224–6229. https://doi.org/10.1073/PNAS.1501821112

    Article  CAS  PubMed  Google Scholar 

  32. Qu Y, Thamm AMK, Czerwinski M et al (2018) Geissoschizine synthase controls flux in the formation of monoterpenoid indole alkaloids in a Catharanthus roseus mutant. Planta 247:625–634. https://doi.org/10.1007/s00425-017-2812-7

    Article  CAS  PubMed  Google Scholar 

  33. Caputi L, Franke J, Farrow SC et al (2018) Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 360:1235–1239. https://doi.org/10.1126/science.aat4100

    Article  CAS  PubMed  Google Scholar 

  34. Qu Y, Safonova O, De Luca V (2019) Completion of the canonical pathway for assembly of anticancer drugs vincristine/vinblastine in Catharanthus roseus. Plant J 97:257–266. https://doi.org/10.1111/tpj.14111

    Article  CAS  PubMed  Google Scholar 

  35. Taura F, Tanaka S, Taguchi C et al (2009) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583:2061–2066

    Article  CAS  Google Scholar 

  36. Gagne SJ, Stout JM, Liu E et al (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci USA 109:12811–12816. https://doi.org/10.1073/pnas.1200330109

    Article  PubMed  Google Scholar 

  37. Sirikantaramas S, Taura F, Tanaka Y et al (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582. https://doi.org/10.1093/pcp/pci166

    Article  CAS  PubMed  Google Scholar 

  38. Taura F, Morimoto S, Shoyama Y (1996) Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J Biol Chem 271:17411–17416. https://doi.org/10.1074/jbc.271.29.17411

    Article  CAS  PubMed  Google Scholar 

  39. Taura F, Sirikantaramas S, Shoyama Y et al (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581:2929–2934. https://doi.org/10.1016/j.febslet.2007.05.043

    Article  CAS  PubMed  Google Scholar 

  40. Luo X, Reiter MA, d’Espaux L et al (2019) Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567:123–126. https://doi.org/10.1038/s41586-019-0978-9

    Article  CAS  PubMed  Google Scholar 

  41. Zirpel B, Degenhardt F, Martin C et al (2017) Engineering yeasts as platform organisms for cannabinoid biosynthesis. J Biotechnol 259:204–212. https://doi.org/10.1016/j.jbiotec.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  42. Dastmalchi M, Chang L, Chen R et al (2019) Purine permease-type benzylisoquinoline alkaloid transporters in opium poppy. Plant Physiol 181:916–933. https://doi.org/10.1104/pp.19.00565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fossati E, Ekins A, Narcross L et al (2014) Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat Commun 5:3283. https://doi.org/10.1038/ncomms4283

    Article  CAS  PubMed  Google Scholar 

  44. Yu F, De Luca V (2013) ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci USA 110:15830–15835. https://doi.org/10.1073/pnas.1307504110

    Article  PubMed  Google Scholar 

  45. Payne RME, Xu D, Foureau E et al (2017) An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat Plants 3:16208. https://doi.org/10.1038/nplants.2016.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Larsen B, Fuller VL, Pollier J et al (2017) Identification of iridoid glucoside transporters in Catharanthus roseus. Plant Cell Physiol 58:1507–1518. https://doi.org/10.1093/pcp/pcx097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Livingston SJ, Quilichini TD, Booth JK et al (2020) Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. Plant J 101:37–56. https://doi.org/10.1111/tpj.14516

    Article  CAS  PubMed  Google Scholar 

  48. Hwang J-U, Song W-Y, Hong D et al (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9:338–355. https://doi.org/10.1016/j.molp.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  49. Laverty KU, Stout JM, Sullivan MJ et al (2019) A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res 29:146–156. https://doi.org/10.1101/gr.242594.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kellner F, Kim J, Clavijo BJ et al (2015) Genome-guided investigation of plant natural product biosynthesis. Plant J 82:680–692. https://doi.org/10.1111/tpj.12827

    Article  CAS  PubMed  Google Scholar 

  51. Dugé de Bernonville T, Foureau E, Parage C et al (2015) Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics 16:619. https://doi.org/10.1186/s12864-015-1678-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Munkert J, Pollier J, Miettinen K et al (2015) Iridoid synthase activity is common among the plant progesterone 5β-reductase family. Mol Plant 8:136–152. https://doi.org/10.1016/j.molp.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  53. Besseau S, Kellner F, Lanoue A et al (2013) A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiol 163:1792–1803. https://doi.org/10.1104/pp.113.222828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. DeLoache WC, Russ ZN, Narcross L et al (2015) An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 11:465–471. https://doi.org/10.1038/nchembio.1816

    Article  CAS  PubMed  Google Scholar 

  55. Runguphan W, Glenn WS, O’Connor SE (2012) Redesign of a dioxygenase in morphine biosynthesis. Chem Biol 19:674–678. https://doi.org/10.1016/j.chembiol.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  56. Denby CM, Li RA, Vu VT et al (2018) Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat Commun 9:965. https://doi.org/10.1038/s41467-018-03293-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. https://doi.org/10.1038/nature04640

    Article  CAS  PubMed  Google Scholar 

  58. Paddon CJ, Westfall PJ, Pitera DJ et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532. https://doi.org/10.1038/nature12051

    Article  CAS  PubMed  Google Scholar 

  59. Campbell A, Bauchart P, Gold ND et al (2016) Engineering of a nepetalactol-producing platform strain of Saccharomyces cerevisiae for the production of plant seco-iridoids. ACS Synth Biol 5:405–414. https://doi.org/10.1021/acssynbio.5b00289

    Article  CAS  PubMed  Google Scholar 

  60. Luttik MAH, Vuralhan Z, Suir E et al (2008) Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10:141–153. https://doi.org/10.1016/j.ymben.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  61. Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD (2015) De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng 31:74–83. https://doi.org/10.1016/j.ymben.2015.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kluza A, Niedzialkowska E, Kurpiewska K et al (2018) Crystal structure of thebaine 6-O-demethylase from the morphine biosynthesis pathway. J Struct Biol 202:229–235. https://doi.org/10.1016/j.jsb.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  63. Shoyama Y, Tamada T, Kurihara K et al (2012) Structure and function of ∆1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa. J Mol Biol 423:96–105. https://doi.org/10.1016/j.jmb.2012.06.030

    Article  CAS  PubMed  Google Scholar 

  64. Ma X, Panjikar S, Koepke J et al (2006) The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed β-propeller fold in plant proteins. Plant Cell 18:907–920. https://doi.org/10.1105/tpc.105.038018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bennett MR, Thompson ML, Shepherd SA et al (2018) Structure and biocatalytic scope of coclaurine N-methyltransferase. Angew Chemie Int Ed 57:10600–10604. https://doi.org/10.1002/anie.201805060

    Article  CAS  Google Scholar 

  66. Lang DE, Morris JS, Rowley M et al (2019) Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition. J Biol Chem 294:14482–14898. https://doi.org/10.1074/jbc.RA119.009214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. French CE, Bruce NC (1994) Purification and characterization of morphinone reductase from Pseudomonas putida M10. Biochem J 301:97–103. https://doi.org/10.1042/bj3010097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. French CE, Hailes AM, Rathbone DA et al (1995) Biological production of semisynthetic opiates using genetically engineered bacteria. Bio/Technology 13:674–676. https://doi.org/10.1038/nbt0795-674

    Article  CAS  Google Scholar 

  69. Nakagawa A, Matsumura E, Koyanagi T et al (2016) Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun 7:10390. https://doi.org/10.1038/ncomms10390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakagawa A, Matsuzaki C, Matsumura E et al (2014) (R, S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli. Sci Rep 4:6695. https://doi.org/10.1038/srep06695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lütke-Eversloh T, Stephanopoulos G (2007) L-Tyrosine production by deregulated strains of Escherichia coli. Appl Microbiol Biotechnol 75:103–110. https://doi.org/10.1007/s00253-006-0792-9

    Article  CAS  PubMed  Google Scholar 

  72. Minami H, Kim J-S, Ikezawa N et al (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci USA 105:7393–7398. https://doi.org/10.1073/pnas.0802981105

    Article  PubMed  Google Scholar 

  73. Nakagawa A, Minami H, Kim J-S et al (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2:326. https://doi.org/10.1038/ncomms1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim J-S, Nakagawa A, Yamazaki Y et al (2013) Improvement of reticuline productivity from dopamine by using engineered Escherichia coli. Biosci Biotechnol Biochem 77:2166–2168. https://doi.org/10.1271/bbb.130552

    Article  CAS  PubMed  Google Scholar 

  75. Matsumura E, Nakagawa A, Tomabechi Y et al (2017) Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method. Biosci Biotechnol Biochem 81:396–402. https://doi.org/10.1080/09168451.2016.1243985

    Article  CAS  PubMed  Google Scholar 

  76. Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4:2337–2347. https://doi.org/10.1039/B602413K

    Article  CAS  PubMed  Google Scholar 

  77. Neumann CS, Fujimori DG, Walsh CT (2008) Halogenation strategies in natural product biosynthesis. Chem Biol 15:99–109. https://doi.org/10.1016/j.chembiol.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  78. Li Y, Li S, Thodey K et al (2018) Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc Natl Acad Sci USA 115:3922–3931. https://doi.org/10.1073/pnas.1721469115

    Article  CAS  Google Scholar 

  79. McCoy E, O’Connor SE (2006) Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus. J Am Chem Soc 128:14276–14277. https://doi.org/10.1021/ja066787w

    Article  CAS  PubMed  Google Scholar 

  80. Runguphan W, Qu X, O’Connor SE (2010) Integrating carbon–halogen bond formation into medicinal plant metabolism. Nature 468:461–464. https://doi.org/10.1038/nature09524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Markey SP (2007) CHAPTER 11-Pathways of drug metabolism. In: Abernethy DR, Daniels CE, et al. (eds) Atkinson AJ. Academic Press, Burlington, pp 143–162

    Google Scholar 

  82. Matsumura E, Nakagawa A, Tomabechi Y et al (2018) Microbial production of novel sulphated alkaloids for drug discovery. Sci Rep 8:7980. https://doi.org/10.1038/s41598-018-26306-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pyne ME, Kevvai K, Grewal PS et al (2020) A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids. Nat Commun 11:3337. https://doi.org/10.1038/s41467-020-17172-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bow EW, Rimoldi JM (2016) The structure–function relationships of classical cannabinoids: CB1/CB2 modulation. Perspect Medicin Chem 8:17–39. https://doi.org/10.4137/PMC.S32171

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zipp BJ, Hardman JM BR (2017) Cannabinoid glycoside prodrugs and methods of synthesis. WO2017053574A1.

Download references

Acknowledgements

We thank Jillian Hagel for a critical manuscript review. This work was supported by an Alberta Applied Agricultural Genomics Program grant from Genome Alberta (project number A3GP16) and a Strategic Project Grant from Alberta Innovates (project number G2018000889) to PJF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Facchini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozber, N., Watkins, J.L. & Facchini, P.J. Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products. J Ind Microbiol Biotechnol 47, 815–828 (2020). https://doi.org/10.1007/s10295-020-02300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02300-9

Keywords

Navigation