Skip to main content

Advertisement

Log in

A Survey on the Computation Offloading Approaches in Mobile Edge/Cloud Computing Environment: A Stochastic-based Perspective

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Fast growth of produced data from deferent smart devices such as smart mobiles, IoT/IIoT networks, and vehicular networks running different specific applications such as Augmented Reality (AR), Virtual Reality (VR), and positioning systems, demand more and more processing and storage resources. Offloading is a promising technique to cope with the inherent limitations of such devices by which the resource-intensive code or at least a part of it will be transferred to the nearby resource-rich servers. Different approaches have been proposed to help make better decisions in respect of whether, where, when, and how much to offload and to improve the efficiency of the offloading process in the literature. On the other hand, the dynamic behavior of mobile devices running on-demand applications faces the offloading to the new challenges, which could be described as stochastic behaviors. Therefore, various stochastic offloading models have been proposed in the literature. However, to the best of the author’s knowledge, despite the existence of plenty of related offloading studies in the literature, there is not any systematic, comprehensive, and detailed survey paper focusing on stochastic-based offloading mechanisms. In this paper, we propose a survey paper concerning the stochastic-based offloading approaches in various computation environments such as Mobile Cloud Computing (MCC), Mobile Edge Computing (MEC), and Fog Computing (FC) in which to identify new mechanisms, a classical taxonomy is presented. The proposed taxonomy is classified into three main fields: Markov chain, Markov process, and Hidden Markov Models. Then, open issues and future unexplored or inadequately explored research challenges are discussed, and the survey is finally concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fu, F., Zhang, Z., Yu, F.R., Yan, Q.: An actor-critic reinforcement learning-based resource management in mobile edge computing systems. Int. J. Mach. Learn. Cybern. 1–15 (2020)

  2. Chen, X., Pu, L., Gao, L., Wu, W., Wu, D.: Exploiting massive D2D collaboration for energy-efficient mobile edge computing. IEEE Wireless communications 24(4), 64–71 (2017)

    Google Scholar 

  3. Ghobaei-Arani, M., Khorsand, R., Ramezanpour, M.: An autonomous resource provisioning framework for massively multiplayer online games in cloud environment. Journal of Network and Computer Applications 142, 76–97 (2019)

    Google Scholar 

  4. Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manage. 25(1), 122–158 (2017)

    Google Scholar 

  5. Bushnaq, O.M., Kishk, M.A., Çelik, A., Alouini, M.S., Al-Naffouri, T.Y.: Cellular traffic offloading through tethered-uav deployment and user association. arXiv preprint arXiv:2003.00713 (2020)

  6. Masdari, M., Zangakani, M.: Green cloud computing using proactive virtual machine placement: challenges and issues. J. Grid Comput. 1–33 (2019)

  7. Lordan, F., Badia, R.M.: Compss-mobile: Parallel programming for mobile cloud computing. J. Grid Comput. 15(3), 357–378 (2017)

    Google Scholar 

  8. Douc, R., Moulines, E., Priouret, P., Soulier, P.: Markov chains (p. 16). Springer, Berlin (2018)

  9. Ghobaei-Arani, M., Souri, A., Safara, F., Norouzi, M.: An efficient task scheduling approach using moth‐flame optimization algorithm for cyber‐physical system applications in fog computing. Trans. Emerg. Telecommun. Technol. 31(2), .e3770 (2020)

    Google Scholar 

  10. Panigrahi, C.R., Sarkar, J.L., Pati, B.: Transmission in mobile cloudlet systems with intermittent connectivity in emergency areas. Digit. Commun. Netw. 4(1), 69–75 (2018)

    Google Scholar 

  11. Ghobaei-Arani, M., Souri, A., Rahmanian, A.A.: Resource management approaches in fog computing: a comprehensive review. J. Grid Comput. 1–42 (2019)

  12. Toczé, K., Nadjm-Tehrani, S.: A taxonomy for management and optimization of multiple resources in edge computing. Wirel. Commun. Mob. Comput. 2018 (2018)

  13. Ghobaei-Arani, M., Souri, A.: LP-WSC: a linear programming approach for web service composition in geographically distributed cloud environments. J. Supercomput. 75(5), 2603–2628 (2019)

    Google Scholar 

  14. Huang, L., Bi, S., Zhang, Y.J.: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput. (2019)

  15. Sun, Y., Wei, T., Li, H., Zhang, Y., Wu, W.: Energy-efficient multimedia task assignment and computing offloading for mobile edge computing networks. IEEE Access 8, 36702–36713 (2020)

    Google Scholar 

  16. Hu, M., Wu, D., Wu, W., Cheng, J., Chen, M.: Quantifying the influence of intermittent connectivity on mobile edge computing. IEEE Trans. Cloud Comput. (2019.)

  17. Donyagard Vahed, N., Ghobaei-Arani, M., Souri, A.: Multiobjective virtual machine placement mechanisms using nature‐inspired metaheuristic algorithms in cloud environments: A comprehensive review. Int. J. Commun Syst 32(14), e4068 (2019)

    Google Scholar 

  18. De Maio, V., Brandic, I.: First hop mobile offloading of dag computations. In Proceedings of the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (pp. 83–92). IEEE Press (2018)

  19. Nawrocki, P., Sniezynski, B.: Autonomous context-based service optimization in mobile cloud computing. J. Grid Comput. 15(3), 343–356 (2017)

    Google Scholar 

  20. Ghobaei-Arani, M., Shamsi, M., Rahmanian, A.A.: An efficient approach for improving virtual machine placement in cloud computing environment. J. Exp. Theor. Artif. Intell. 29(6), 1149–1171 (2017)

    Google Scholar 

  21. Han, Z., Niyato, D., Saad, W., Başar, T., Hjørungnes, A.: Game theory in wireless and communication networks: theory, models, and applications. Cambridge University Press, Cambridge (2012)

  22. Behera, H.S., Nayak, J., Naik, B., Pelusi, D. (eds.): Computational Intelligence in Data Mining: Proceedings of the International Conference on ICCIDM 2018 (Vol. 990). Springer, Berlin (2019)

  23. Escamilla-Ambrosio, P.J., Rodríguez-Mota, A., Aguirre-Anaya, E., Acosta-Bermejo, R., Salinas-Rosales, M.: Distributing Computing in the internet of things: cloud, fog and edge computing overview. In: NEO 2016, pp. 87–115. Springer, Cham (2018)

    Google Scholar 

  24. Mach, P., Becvar, Z.: Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutorials 19(3), 1628–1656 (2017)

    Google Scholar 

  25. Ahmed, E., Rehmani, M.H.: Mobile edge computing: opportunities, solutions, and challenges (2017)

  26. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Gener. Comput. Syst. 78, 680–698 (2018)

  27. Gao, L., Moh, M.: Joint computation offloading and prioritized scheduling in mobile edge computing. In 2018 International Conference on High Performance Computing & Simulation (HPCS) (pp. 1000–1007). IEEE (2018)

  28. European Telecommunications Standards Institute (ETSI), accessed 22: https://www.etsi.org/technologies/multi-access-edge-computing (2020)

  29. OpenFog Consortium, accessed 23: https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf (2020)

  30. Huang, L., Feng, X., Feng, A., Huang, Y., Qian, L.P.: Distributed deep learning-based offloading for mobile edge computing networks. Mob Netw Appl. 1–8 (2018)

  31. Yu, F., Chen, H., Xu, J.: Dynamic mobility-aware partial offloading in mobile edge computing. Future Gener. Comput. Syst. 89, 722–735 (2018)

    Google Scholar 

  32. Meng, T., Wolter, K., Wu, H., Wang, Q.: A secure and cost-efficient offloading policy for Mobile Cloud Computing against timing attacks. Pervasive Mob. Comput. 45, 4–18 (2018)

    Google Scholar 

  33. Liu, L., Qin, X., Zhang, Z., Zhang, P.: Joint task offloading and resource allocation for obtaining fresh status updates in multi-device MEC systems. IEEE Access 8, 38248–38261 (2020)

    Google Scholar 

  34. Huang, L., Feng, X., Zhang, C., Qian, L., Wu, Y.: Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing. Digit. Commun. Netw. 5(1), 10–17 (2019)

    Google Scholar 

  35. Zhang, J., Hu, X., Ning, Z., Ngai, E.C.H., Zhou, L., Wei, J., Cheng, J., Hu, B.: Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Internet Things J. 5(4), 2633–2645 (2017)

    Google Scholar 

  36. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of Experience (QoE)-aware placement of applications in Fog computing environments. J. Parallel Distrib. Comput. 132, 190–203 (2019)

    Google Scholar 

  37. Wu, S., Xia, W., Cui, W., Chao, Q., Lan, Z., Yan, F., Shen, L.: An efficient offloading algorithm based on support vector machine for mobile edge computing in vehicular networks. In 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP) (pp. 1–6). IEEE (2018)

  38. De Maio, V., Brandic, I.: Multi-objective mobile edge provisioning in small cell clouds. In Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering (pp. 127–138). ACM (2019)

  39. Li, L., Siew, M., Quek, T.Q., Ren, J., Chen, Z., Zhang, Y.: Learning-based priority pricing for job offloading in mobile edge computing. arXiv preprint arXiv:1905.07749 (2019)

  40. Panigrahi, C.R., Sarkar, J.L., Pati, B.: Transmission in mobile cloudlet systems with intermittent connectivity in emergency areas. Digit Commun. Netw. 4(1), 69–75 (2018)

    Google Scholar 

  41. Hu, M., Wu, D., Wu, W., Cheng, J., Chen, M.: Quantifying the influence of intermittent connectivity on mobile edge computing. IEEE Trans. Cloud Comput. (2019)

  42. Zhang, Y., Niyato, D., Wang, P.: Offloading in mobile cloudlet systems with intermittent connectivity. IEEE Trans. Mob. Comput. 14(12), 2516–2529 (2015)

    Google Scholar 

  43. Lyu, X., Tian, H., Jiang, L., Vinel, A., Maharjan, S., Gjessing, S., Zhang, Y.: Selective offloading in mobile edge computing for the green internet of things. IEEE Netw. 32(1), 54–60 (2018)

    Google Scholar 

  44. Samanta, A., Chang, Z.: Adaptive service offloading for revenue maximization in mobile edge computing with delay-constraint. IEEE Internet Things J. 6(2), 3864–3872 (2019)

    Google Scholar 

  45. Pan, Y., Pan, C., Zhu, H., Ahmed, Q.Z., Chen, M., Wang, J.: On consideration of content preference and sharing willingness in D2D assisted offloading. IEEE J. Sel. Areas Commun. 35(4), 978–993 (2017)

    Google Scholar 

  46. Pu, L., Chen, X., Xu, J., Fu, X.: D2D fogging: An energy-efficient and incentive-aware task offloading framework via network-assisted D2D collaboration. IEEE J. Sel. Areas Commun. 34(12), 3887–3901 (2016)

    Google Scholar 

  47. Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S., Zhang, Y.: Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4, 5896–5907 (2016)

    Google Scholar 

  48. Gu, F., Niu, J., Qi, Z., Atiquzzaman, M.: Partitioning and offloading in smart mobile devices for mobile cloud computing: State of the art and future directions. J. Netw. Comput. Appl. 119, 83–96 (2018)

    Google Scholar 

  49. Sörensen, K., Glover, F.: Metaheuristics. Encyclopedia of operations research and management science, 62, pp. 960–970 (2013)

  50. De Maio, V., Brandic, I.: Multi-Objective Mobile Edge Provisioning in Small Cell Clouds. In Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering (pp. 127–138). ACM (2019)

  51. Liu, J., Zhang, Q.: Code-partitioning offloading schemes in mobile edge computing for augmented reality. IEEE Access 7, 11222–11236 (2019)

    Google Scholar 

  52. Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog computing for IoT: Review, enabling technologies, and research opportunities. Future Gener. Comput. Syst. 87, 278–289 (2018)

    Google Scholar 

  53. Bi, S., Zhang, Y.J.: Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans. Wirel. Commun. 17(6), 4177–4190 (2018)

    Google Scholar 

  54. Tout, H., Talhi, C., Kara, N., Mourad, A.: Smart mobile computation offloading: Centralized selective and multi-objective approach. Expert. Syst. Appl. 80, 1–13 (2017)

    Google Scholar 

  55. Zhang, J., Xia, W., Zhang, Y., Zou, Q., Huang, B., Yan, F., Shen, L.: Joint offloading and resource allocation optimization for mobile edge computing. In GLOBECOM 2017–2017 IEEE Global Communications Conference (pp. 1–6). IEEE (2017)

  56. Chen, Z., Wang, X.: Decentralized computation offloading for multi-user mobile edge computing: A deep reinforcement learning approach. arXiv preprint arXiv:1812.07394 (2018)

  57. Jošilo, S., Dán, G.: Selfish decentralized computation offloading for mobile cloud computing in dense wireless networks. IEEE Trans. Mob. Comput. 18(1), 207–220 (2018)

    Google Scholar 

  58. Jošilo, S., Dán, G.: Decentralized scheduling for offloading of periodic tasks in mobile edge computing. In 2018 IFIP Networking Conference (IFIP Networking) and Workshops (pp. 1–9). IEEE (2018)

  59. Tang, W., Zhao, X., Rafique, W., Qi, L., Dou, W., Ni, Q.: An offloading method using decentralized P2P-enabled mobile edge servers in edge computing. J. Syst. Architect. 94, 1–13 (2019)

    Google Scholar 

  60. Atoui, W.S., Ajib, W., Boukadoum, M.: Offline and online scheduling algorithms for energy harvesting RSUs in VANETs. IEEE Trans. Veh. Technol. 67(7), 6370–6382 (2018)

    Google Scholar 

  61. Jin, X., Wang, Z., Hua, W.: Cooperative runtime offloading decision algorithm for mobile cloud computing. Mob. Inf. Syst. 2019 (2018)

  62. Majeed, A.A., Kilpatrick, P., Spence, I., Varghese, B.: Performance estimation of container-based cloud-to-fog offloading. arXiv preprint arXiv:1909.04945 (2019)

  63. Ma, L., Yi, S., Li, Q.: Efficient service handoff across edge servers via docker container migration. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing (pp. 1–13) (2017)

  64. Teka, F., Lung, C.H., Ajila, S.: Seamless live virtual machine migration with cloudlets and multipath TCP. In 2015 IEEE 39th Annual Computer Software and Applications Conference (Vol. 2, pp. 607–616). IEEE (2015)

  65. Wu, S., Niu, C., Rao, J., Jin, H., Dai, X.: Container-based cloud platform for mobile computation offloading. In 2017 IEEE international parallel and distributed processing symposium (IPDPS) (pp. 123–132). IEEE (2017)

  66. Faruqi, F.A.: Differential game theory with applications to missiles and autonomous systems guidance. Wiley, Hoboken (2017)

  67. Ankan, A., Panda, A.: Hands-on Markov models with python: Implement probabilistic models for learning complex data sequences using the Python ecosystem. Packt Publishing Ltd, Birmingham (2018)

  68. Bhat, U.N.: Decision problems in queueing theory. In: An Introduction to Queueing Theory, pp. 233–238. Birkhäuser, Boston (2015)

    Google Scholar 

  69. Vogel, S.: Universal confidence sets for solutions of stochastic optimization problems—a contribution to quantification of uncertainty. In: Workshop on Stochastic Models, Statistics and their Application, pp. 207–218. Springer, Cham (2019)

    Google Scholar 

  70. Ahmed, E., Gani, A., Sookhak, M., Hamid, A., Xia, F.: Application optimization in mobile cloud computing: Motivation, taxonomies, and open challenges. J. Netw. Comput. Appl. 52, 52–68 (2015)

    Google Scholar 

  71. Zhou, H., Wang, H., Li, X., Leung, V.C.: A survey on mobile data offloading technologies. IEEE Access 6, 5101–5111 (2018)

    Google Scholar 

  72. Guevara, J.C., Torres, R.D.S., da Fonseca, N.L.: On the classification of fog computing applications: A machine learning perspective. J. Netw. Comput. Appl. 102596 (2020)

  73. Wang, J., Pan, J., Esposito, F., Calyam, P., Yang, Z., Mohapatra, P.: Edge Cloud Offloading Algorithms: Issues, Methods, and Perspectives. ACM Comput. Surv. 52(1), 2 (2019)

    Google Scholar 

  74. Jiang, C., Cheng, X., Gao, H., Zhou, X., Wan, J.: Toward Computation Offloading in Edge Computing: A Survey. IEEE Access 7, 131543–131558 (2019)

    Google Scholar 

  75. Boukerche, A., Guan, S., Grande, R.E.D.: Sustainable offloading in mobile cloud computing: algorithmic design and implementation. ACM Comput. Surv. 52(1), 11 (2019)

    Google Scholar 

  76. Zhang, C., Patras, P., Haddadi, H.: Deep learning in mobile and wireless networking: A survey. IEEE Commun. Surv. Tutorials 21(3), 2224–2287 (2019)

    Google Scholar 

  77. Cao, B., Zhang, L., Li, Y., Feng, D., Cao, W.: Intelligent offloading in multi-access edge computing: A state-of-the-art review and framework. IEEE Commun. Mag. 57(3), 56–62 (2019)

    Google Scholar 

  78. Han, Y., Wang, X., Leung, V., Niyato, D., Yan, X., Chen, X.: Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. arXiv preprint arXiv:1907.08349 (2019)

  79. Karniavoura, F., Magoutis, K.: Decision-making approaches for performance QoS in distributed storage systems: A survey. IEEE Trans. Parallel Distrib. Syst. 30(8), 1906–1919 (2019)

    Google Scholar 

  80. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud computing: state of the art and research challenges. IEEE Trans. Serv. Comput. 11(2), 430–447 (2017)

    Google Scholar 

  81. Masdari, M.: Markov chain-based evaluation of the certificate status validations in hybrid MANETs. J. Netw. Comput. Appl. 80, 79–89 (2017)

    Google Scholar 

  82. Boucherie, R.J., Van Dijk, N.M. (eds.): Markov decision processes in practice. Springer International Publishing, Berlin (2017)

  83. Yu, S.Z.: Hidden semi-Markov models: theory, algorithms and applications (2016)

  84. Hu, Q., Yue, W.: Markov decision processes with their applications (Vol. 14). Springer Science & Business Media, Berlin (2007)

  85. Westhead, D.R., Vijayabaskar, M.S. (eds.): Hidden Markov models: methods and protocols. Humana Press, Totowa (2017)

  86. Chen, X., Chen, T., Zhao, Z., Zhang, H., Bennis, M., Ji, Y.: Resource awareness in unmanned aerial vehicle-assisted mobile-edge computing systems. arXiv preprint arXiv:1911.07653 (2019)

  87. Ko, S.W., Huang, K., Kim, S.L., Chae, H.: Energy efficient mobile computation offloading via online prefetching. In 2017 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE (2017)

  88. Zhang, X., Cao, Y.: Mobile data offloading efficiency: a stochastic analytical view. In 2018 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 1–6). IEEE (2018)

  89. Li, K.: Quantitative modeling and analytical calculation of elasticity in cloud computing. IEEE Trans. Cloud Comput. (2017)

  90. He, Y., Zhao, N., Yin, H.: Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach. IEEE Trans. Veh. Technol. 67(1), 44–55 (2017)

    Google Scholar 

  91. Zhou, W., Fang, W., Li, Y., Yuan, B., Li, Y., Wang, T.: Markov approximation for task offloading and computation scaling in mobile edge computing. Mob. Inf. Syst. (2019)

  92. He, Y., Liang, C., Yu, R., Han, Z.: Trust-based social networks with computing, caching and communications: A deep reinforcement learning approach. IEEE Trans. Netw. Sci. Eng. (2018)

  93. Tan, L.T., Hu, R.Q.: Mobility-aware edge caching and computing in vehicle networks: A deep reinforcement learning. IEEE Trans. Veh. Technol. 67(11), 10190–10203 (2018)

    Google Scholar 

  94. Wu, H., Wolter, K.: Stochastic analysis of delayed mobile offloading in heterogeneous networks. IEEE Trans. Mob. Comput. 17(2), 461–474 (2017)

    Google Scholar 

  95. Zhao, X., Yang, K., Chen, Q., Peng, D., Jiang, H., Xu, X., Shuang, X.: Deep learning based mobile data offloading in mobile edge computing systems. Future Gener. Comput. Syst. 99, 346–355 (2019)

    Google Scholar 

  96. Min, M., Xiao, L., Chen, Y., Cheng, P., Wu, D., Zhuang, W.: Learning-based computation offloading for IoT devices with energy harvesting. IEEE Trans. Veh. Technol. 68(2), 1930–1941 (2019)

    Google Scholar 

  97. Xiao, L., Xie, C., Chen, T., Dai, H., Poor, H.V.: A mobile offloading game against smart attacks. IEEE Access 4, 2281–2291 (2016)

    Google Scholar 

  98. Ko, S.W., Han, K., Huang, K.: Wireless networks for mobile edge computing: Spatial modeling and latency analysis. IEEE Trans. Wireless Commun. 17(8), 5225–5240 (2018)

    Google Scholar 

  99. Zhou, J., Tian, D., Wang, Y., Sheng, Z., Duan, X., Leung, V.C.: Reliability-oriented optimization of computation offloading for cooperative vehicle-infrastructure systems. IEEE Signal Process. Lett. 26(1), 104–108 (2018)

    Google Scholar 

  100. Tan, L.T., Hu, R.Q.: Mobility-aware edge caching and computing in vehicle networks: A deep reinforcement learning. IEEE Trans. Veh. Technol. 67(11), 10190–10203 (2018)

    Google Scholar 

  101. Tao, Y., You, C., Zhang, P., Huang, K.: Stochastic control of computation offloading to a helper with a dynamically loaded cpu. IEEE Trans. Wireless Commun. 18(2), 1247–1262 (2019)

    Google Scholar 

  102. Fu, F., Zhang, Z., Yu, F.R., Yan, Q.: An actor-critic reinforcement learning-based resource management in mobile edge computing systems. Int. J. Mach. Learn. Cybern. pp. 1–15 (2020)

  103. Alam, M.G.R., Hassan, M.M., Uddin, M.Z., Almogren, A., Fortino, G.: Autonomic computation offloading in mobile edge for IoT applications. Future Gener. Comput. Syst. 90, 149–157 (2019)

    Google Scholar 

  104. Zhang, Z., Yu, F.R., Fu, F., Yan, Q., Wang, Z.: Joint offloading and resource allocation in mobile edge computing systems: An actor-critic approach. In 2018 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE (2018)

  105. Lei, L., Xu, H., Xiong, X., Zheng, K., Xiang, W.: Joint computation offloading and multiuser scheduling using approximate dynamic programming in NB-IoT edge computing system. IEEE Internet Things J. 6(3), 5345–5362 (2019)

    Google Scholar 

  106. Li, T., Xiao, Y., Song, L.: Deep reinforcement learning based residential demand side management with edge computing. In 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (pp. 1–6). IEEE (2019)

  107. Asheralieva, A., Niyato, D.: Learning-Based Mobile Edge Computing Resource Management to Support Public Blockchain Networks. IEEE Trans. Mob. Comput. (2019)

  108. Guo, F., Yu, F.R., Zhang, H., Ji, H., Liu, M., Leung, V.C.: Adaptive resource allocation in future wireless networks with blockchain and mobile edge computing. IEEE Trans. Wirel. Commun. (2019)

  109. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., Bennis, M.: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet Things J. (2018)

  110. Xu, J., Chen, L., Ren, S.: Online learning for offloading and autoscaling in energy harvesting mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 3(3), 361–373 (2017)

    Google Scholar 

  111. Qiao, G., Leng, S., Zhang, Y.: Online learning and optimization for computation offloading in D2D edge computing and networks. Mob. Netw. Appl. 1–12 (2019)

  112. Zhang, C., Zheng, Z.: Task migration for mobile edge computing using deep reinforcement learning. Future Gener. Comput. Syst. 96, 111–118 (2019)

    Google Scholar 

  113. Zhang, K., Zhu, Y., Leng, S., He, Y., Maharjan, S., Zhang, Y.: Deep learning empowered task offloading for mobile edge computing in urban informatics. IEEE Internet Things J. (2019)

  114. Zhang, T., Chiang, Y.H., Borcea, C., Ji, Y.: Learning-based offloading of tasks with diverse delay sensitivities for mobile edge computing. In 2019 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE (2019)

  115. Yang, T., Hu, Y., Gursoy, M.C., Schmeink, A., Mathar, R.: Deep reinforcement learning based resource allocation in low latency edge computing networks. In 2018 15th International Symposium on Wireless Communication Systems (ISWCS) (pp. 1–5). IEEE (2018)

  116. Rahbari, D., Nickray, M.: Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Netw. Appl. 1–19 (2019)

  117. Yu, S., Wang, X., Langar, R.: Computation offloading for mobile edge computing: A deep learning approach. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1–6). IEEE (2017)

  118. Zhang, B., Zhang, G., Sun, W., Yang, K.: Task offloading with power control for mobile edge computing using reinforcement learning-based Markov decision process. Mob. Inf. Syst. 2020 (2020)

  119. Guo, B., Zhang, X., Wang, Y., Yang, H.: Deep-Q-network-based multimedia multi-service QoS optimization for mobile edge computing systems. IEEE Access 7, 160961–160972 (2019)

    Google Scholar 

  120. Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., Shen, X.S.: Delay-aware microservice coordination in mobile edge computing: a reinforcement learning approach. IEEE Trans. Mob. Comput. (2019)

  121. Zeng, D., Pan, S., Chen, Z., Gu, L.: An MDP-based wireless energy harvesting decision strategy for mobile device in edge computing. IEEE Netw. 33(6), 109–115 (2019)

    Google Scholar 

  122. Zhang, Z., Wu, J., Chen, L., Jiang, G., Lam, S.K.: Collaborative task offloading with computation result reusing for mobile edge computing. Comput. J. 62(10), 1450–1462 (2019)

    MathSciNet  Google Scholar 

  123. Balasubramanian, V., Zaman, F., Aloqaily, M., Alrabaee, S., Gorlatova, M., Reisslein, M.: Reinforcing the edge: autonomous energy management for mobile device clouds. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 44–49). IEEE (2019)

  124. Zheng, X., Li, M., Tahir, M., Chen, Y., Alam, M.: Stochastic computation offloading and scheduling based on mobile edge computing. IEEE Access 7, 72247–72256 (2019)

    Google Scholar 

  125. Alasmari, K.R., Green, R.C., Alam, M.: Mobile edge offloading using markov decision processes. In International Conference on Edge Computing (pp. 80–90). Springer, Cham (2018)

  126. Wang, W., Lan, R., Gu, J., Huang, A., Shan, H., Zhang, Z.: Edge caching at base stations with device-to-device offloading. IEEE Access 5, 6399–6410 (2017)

    Google Scholar 

  127. Ko, H., Lee, J., Pack, S.: Spatial and temporal computation offloading decision algorithm in edge cloud-enabled heterogeneous networks. IEEE Access 6, 18920–18932 (2018)

    Google Scholar 

  128. Van Le, D., Tham, C.K.: A deep reinforcement learning based offloading scheme in ad-hoc mobile clouds. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 760–765). IEEE (2018)

  129. Liu, D., Khoukhi, L., Hafid, A.: Data offloading in mobile cloud computing: A Markov decision process approach. In 2017 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE (2017)

  130. Zhang, C., Gu, B., Liu, Z., Yamori, K., Tanaka, Y.: Cost-and energy-aware multi-flow mobile data offloading under time dependent pricing. In 2017 13th International Conference on Network and Service Management (CNSM) (pp. 1–6). IEEE (2017)

  131. He, X., Liu, J., Jin, R., Dai, H.: Privacy-aware offloading in mobile-edge computing. In GLOBECOM 2017–2017 IEEE Global Communications Conference (pp. 1–6). IEEE (2017)

  132. Liu, B., Zhu, Q., Tan, W., Zhu, H.: Congestion-optimal WIFI offloading with user mobility management in smart communications. Wirel. Commun. Mob. Comput. 2018 (2018)

  133. Chen, L., Zhou, S., Xu, J.: Computation peer offloading for energy-constrained mobile edge computing in small-cell networks. IEEE/ACM Trans. Netw. 26(4), 1619–1632 (2018)

    Google Scholar 

  134. Dinh, T.Q., La, Q.D., Quek, T.Q., Shin, H.: Learning for computation offloading in mobile edge computing. IEEE Trans. Commun. 66(12), 6353–6367 (2018)

    Google Scholar 

  135. El Shenawy, A., Mohamed, K., Harb, H.: HDec-POSMDPs MRS exploration and fire searching based on IoT cloud robotics. Int. J. Autom. Comput. 1–14

  136. Li, J., Liu, Q., Wu, P., Shu, F., Jin, S.: Task Offloading for UAV-based mobile edge computing via deep reinforcement learning. In 2018 IEEE/CIC International Conference on Communications in China (ICCC) (pp. 798–802). IEEE (2018)

  137. Carvalho, G.H., Woungang, I., Anpalagan, A., Degtiareva, E., Rodrigues, J.J.: A Semi-Markov Decision Model-based brokering mechanism for mobile cloud market. In 2017 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE (2017)

  138. Wang, Z., Zhong, Z., Ni, M.: A semi-Markov decision process-based computation offloading strategy in vehicular networks. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1–6). IEEE (2017)

  139. Wang, Z., Zhong, Z., Ni, M.: Application-aware offloading policy using smdp in vehicular fog computing systems. In 2018 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 1–6). IEEE (2018)

  140. Wu, Q., Liu, H., Wang, R., Fan, P., Fan, Q., Li, Z.: Delay sensitive task offloading in the 802.11 p based vehicular fog computing systems. IEEE Internet Things J. (2019)

  141. Wu, Q., Ge, H., Liu, H., Fan, Q., Li, Z., Wang, Z.: A task offloading scheme in vehicular fog and cloud computing system. IEEE Access (2019)

  142. Xie, J., Jia, Y., Chen, Z., Liang, L.: Mobility-aware task parallel offloading for vehicle fog computing. In International Conference on Artificial Intelligence for Communications and Networks (pp. 367–379). Springer, Cham (2019)

  143. Sangaiah, A.K., Medhane, D.V., Han, T., Hossain, M.S., Muhammad, G.: Enforcing position-based confidentiality with machine learning paradigm through mobile edge computing in real-time industrial informatics. IEEE Trans. Ind. Inform. (2019)

  144. Samir, A., Pahl, C.: DLA: Detecting and Localizing Anomalies in containerized microservice architectures using Markov Models. In 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud) (pp. 205–213). IEEE (2019)

  145. Wang, X., Xu, W., Jin, Z.: A hidden Markov model based dynamic scheduling approach for mobile cloud telemonitoring. In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (pp. 273–276). IEEE (2017)

  146. Ivanchenko, O., Kharchenko, V., Moroz, B., Kabak, L., Smoktii, K.: Semi-Markov availability model considering deliberate malicious impacts on an Infrastructure-as-a-Service Cloud. In 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET) (pp. 570–573). IEEE (2018)

  147. Dubrova, E.: Fault tolerant design: An introduction. Department of Microelectronics and Information Technology, Royal Institute of Technology, Stockholm (2008)

    MATH  Google Scholar 

  148. Shooman, M.L.: Reliability of computer systems and networks: fault tolerance, analysis, and design. Wiley, Hoboken (2003)

  149. Gribaudo, M., Manini, D., Remke, A. (eds.): Analytical and stochastic modelling techniques and applications: 22nd International Conference, ASMTA 2015, Albena, Bulgaria, May 26–29, 2015. Proceedings (Vol. 9081). Springer, Berlin (2015)

  150. Thomas, N., Forshaw, M.: Analytical and stochastic modelling techniques and applications: 24th International Conference, ASMTA 2017, Newcastle-upon-Tyne, UK, July 10–11, 2017, Proceedings (Vol. 10378). Springer, Berlin (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hosseinzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakarami, A., Ghobaei-Arani, M., Masdari, M. et al. A Survey on the Computation Offloading Approaches in Mobile Edge/Cloud Computing Environment: A Stochastic-based Perspective. J Grid Computing 18, 639–671 (2020). https://doi.org/10.1007/s10723-020-09530-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-020-09530-2

Keywords

Navigation