Skip to main content
Log in

Luminescent metal–organic frameworks and their potential applications

  • Review Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The metal–organic frameworks (MOFs) or porous coordination polymers (PCPs) are a class of porous, crystalline material with numerous possibilities of real-world applications including storage, separation, catalysis, sensing etc. The possibility of intrinsic crystallinity and virtually infinite metal/metal-oxo node and organic linker combination make it a perfect material for photophysical studies. In the last decade, luminescent MOFs have emerged as an excellent modular material for various optical applications, and here, we have discussed about its design strategies. In this review, with relevant examples we have highlighted the rational design approach, possible applications (light emitting diodes, sensing) and future directions in luminescent MOFs.

Graphic abstract

Different approaches of synthesizing luminescent MOFs and their possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.

Similar content being viewed by others

References

  1. Kitagawa S, Kitaura R and Noro S-i 2004 Functional porous coordination polymers Angew. Chem. Int. Ed. Engl. 43 2334

    CAS  Google Scholar 

  2. Zhou H-C, Long J R and Yaghi O M 2012 Introduction to metal-organic frameworks Chem. Rev. 112 673

    CAS  PubMed  Google Scholar 

  3. Deng H, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, Wang B and Yaghi O M 2010 Multiple functional groups of varying ratios in metal-organics Science 327 846

    CAS  PubMed  Google Scholar 

  4. Farha O K, Eryazici I, Jeong N C, Hauser B G, Wilmer C E, Sarjeant A A, Snurr R Q, Nguyen S T, Yazaydın A Ö and Hupp J T 2012 Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134 15016

    CAS  PubMed  Google Scholar 

  5. Furukawa H, Go Y B, Ko N, Park Y K, Uribe-Romo F J, Kim J, O’Keeffe M and Yaghi O M 2011 Isoreticular expnasion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals Inorg. Chem. 50 9147

    CAS  Google Scholar 

  6. Haldar R and Maji T K 2013 Metal-organic frameworks (MOFs) based on mixed linker systems: Structural diversities towards functional material Cryst. Eng. Comm. 15 9276

    CAS  Google Scholar 

  7. Guillerm V, Kim D, Eubank J F, Luebke R, Liu X, Adil K, Lah M S and Eddaoudi M 2014 A supramolecular building approach for the design and construction of metal-organic frameworks Chem. Soc. Rev. 43 6141

    CAS  Google Scholar 

  8. Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle Iii T, Bosch M and Zhou H-C 2014 Tuning the structure and function of metal-organic frameworks via linker design Chem. Soc. Rev. 43 5561

    CAS  Google Scholar 

  9. Li H, Wang K, Sun Y, Lollar C T, Li J and Zhou H-C 2018 Recent advances in gas storage and separation using metal-organic frameworks Mat. Today 21 108

    CAS  Google Scholar 

  10. Qiu S, Xue M and Zhu G 2014 Metal-organic framework membranes: From synthesis to separtion applications Chem. Soc. Rev. 43 6116

    CAS  Google Scholar 

  11. Van de Voorde B, Bueken B, Denayer J and De Vos D 2014 Adsorptive separation on metal-organic frameworks in the liquid phase Chem. Soc. Rev. 43 5766

    Google Scholar 

  12. Rogge S M J, Bavykina A, Hajek J, Garcia H, Olivos-Suarez A I, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez E. V, Llabrés i Xamena F X, Van Speybroeck V and Gascon J 2017 Metal-organic and covalent organic frameworks as single-site catalysts Chem. Soc. Rev. 46 3134

    CAS  Google Scholar 

  13. Liu J, Chen L, Cui H, Zhang J, Zhang L and Su C-Y 2014 Application of metal-organic frameworks in heterogeneous supramolecular catalysis Chem. Soc. Rev. 43 6011

    CAS  Google Scholar 

  14. Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P and Hupp J T 2012 Metal-organic framework materials as chemical sensor Chem. Rev. 112 1105

    CAS  Google Scholar 

  15. Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J and Ghosh S K 2017 Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications Chem. Soc. Rev. 46 3242

    CAS  Google Scholar 

  16. Wang L, Zheng M and Xie Z 2018 Nanoscale metal-organic frameworks for drug delivery: A conventional platform with new promise J. Mat. Chem. B 6 707

    CAS  Google Scholar 

  17. Cai W, Wang J, Chu C, Chen W, Wu C and Liu G 2019 Metal-organic framework-based stimuli-responsive systems for drug delivery Adv. Sci. 6 1801526

    Google Scholar 

  18. Rice A M, Martin C R, Galitskiy V A, Berseneva A A, Leith G A and Shustova N B 2019 Photophysics modulation in photoswitchable metal-organic frameworks Chem. Rev. https://doi.org/10.1021/acs.chemrev.9b00350

    Article  Google Scholar 

  19. Allendorf M D, Bauer C A, Bhakta R K and Houk R J T 2009 Luminescent metal-organic frameworks Chem. Soc. Rev. 38 1330

    CAS  PubMed  Google Scholar 

  20. Stavila V, Talin A A and Allendorf M D 2014 MOF-based electronic and opto-electronic devices Chem. Soc. Rev. 43 5994

    CAS  Google Scholar 

  21. Ma A, Wu J, Han Y, Chen F, Li B, Cai S, Huang H, Singh A, Kumar A and Liu J 2018 Rational synthesis of a luminescent uncommon (3,4,6)-c connected Zn(II)-MOF: A dual channel sensor for the detection of nitroaromatics and ferric ions Dalton Trans. 47 9627

  22. Yang G-P, Wang Y-Y, Liu P, Fu A-Y, Zhang Y-N, Jin J-C and Shi Q-Z 2010 Formation of three new Silver (I) coordination polymers involving 1,2- phenylenediacetic acid via the modulation of dipyridyl-containg lignads Cryst. Growth Des. 10 1443

    CAS  Google Scholar 

  23. Stylianou K C, Heck R, Chong S Y, Bacsa J, Jones J T A, Khimyak Y Z, Bradshaw D and Rosseinsky M J 2010 A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core J. Am. Chem. Soc. 132 4119

    CAS  PubMed  Google Scholar 

  24. Bauer C A, Timofeeva T V, Settersten T B, Patterson B D, Liu V H, Simmons B A and Allendorf M D 2007 Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks J. Am. Chem. Soc. 129 7136

    CAS  PubMed  Google Scholar 

  25. Shustova N B, McCarthy B D and Dincă M 2011 Turn on fluorescence in tetraphenylethylene-based metal-organic frameworks: An alternative to aggregation-induced emission J. Am. Chem. Soc. 133 20126

    CAS  PubMed  Google Scholar 

  26. Shustova N B, Ong T-C, Cozzolino A F, Michaelis V K, Griffin R G and Dincă M 2012 Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: Implications for the mechanism of aggregation-induced emission J. Am. Chem. Soc. 134 15061

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shustova N B, Cozzolino A F and Dincă M 2012 Conformation locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks J. Am. Chem. Soc. 134 19596

    CAS  PubMed  Google Scholar 

  28. Wei Z, Gu Z-Y, Arvapally R K, Chen Y-P, McDougald R N, Ivy J F, Yakovenko A A, Feng D, Omary M A and Zhou H-C 2014 Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement J. Am. Chem. Soc. 136 8269

    CAS  PubMed  Google Scholar 

  29. Hu Z, Huang G, Lustig W P, Wang F, Wang H, Teat S J, Banerjee D, Zhang D and Li J, 2015 Achieving exceptionally high luminescence quantum efficiency by immobilizing an AIE molecular chromophore into a metal-organic framework Chem. Commun. 51 3045

    CAS  Google Scholar 

  30. Haldar R, Diring S, Samanta P K, Muth M, Clancy W, Mazel A, Schlabach S, Kirschhöfer F, Brenner-Weiß G, Pati S K, Odobel F and Wöll C 2018 Enhancing selectivity and kinetics in oxidative photocyclization by supramolecular control Angew. Chem. Int. Ed. Engl. 57 13662

    CAS  Google Scholar 

  31. Hestand N J and Spano F C 2018 Expanded theory of H-and J- molecular aggregates : The affects of vibronic coupling and intramolecular charge transfer Chem. Rev. 118 7069

    CAS  Google Scholar 

  32. Sikdar N, Dutta D, Haldar R, Ray T, Hazra A, Bhattacharyya A J, Maji T K 2016 Coordination-driven fluorescent J-aggregates in a perylenetetracarboxylate-based MOF: Permanent porosity and proton conductivity J. Phys. Chem. C 120 13622

    CAS  Google Scholar 

  33. Haldar R, Mazel A, Krstić M, Zhang Q, Jakoby M, Howard I A, Richards B S, Jung N, Jacquemin D, Diring S, Wenzel W, Odobel F and Wöll C 2019 A de novo strategy for predictive crystal engineering to tune excitonic coupling Nat. Commun. 10 2048

    Google Scholar 

  34. Padalkar V S and Seki S 2016 Excited-state intramolecular proton transfer (ESIPT) inspired solid state emitter Chem. Soc. Rev. 45 169

    CAS  Google Scholar 

  35. Jayaramulu K, Kanoo P, George S J and Maji T K 2010 Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive lignad Chem. Commun. 46 7906

    CAS  Google Scholar 

  36. Chen L, Ye J-W, Wang H-P, Pan M, Yin S-Y, Wei Z-W, Zhang L-Y, Wu K, Fan Y-N and Su C-Y 2017 Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence Nat. Commun. 8 15985

    CAS  Google Scholar 

  37. Shustova N B, Cozzolino A F, Reineke S, Baldo M and Dincă M 2013 Selective turn-on ammonia sensing enabled by high temperature fluorescence in metal-organic frameworks with open metal sites J. Am. Chem. Soc. 135 13326

    CAS  PubMed  Google Scholar 

  38. Li Y-P, Zhu X-H, Li S-N, Jiang Y-C, Hu M-C and Zhai Q-G 2019 Highly selective and sensitive turn-off-on fluorescent probes for sensing Al3+ ions designed by regulating the excited state intramolecular proton transfer process in metal-organic framework ACS Appl. Mater. Interfaces 11 11338

    CAS  Google Scholar 

  39. Jayaramulu K, Narayanan R P, George S J and Maji T K 2012 Luminescent microporous metal-organic framework with functional Lewis basic sites on the pore surface: specific sensing and removal of metal ions Inorg. Chem. 51 10089

    CAS  Google Scholar 

  40. Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z and Aldred M P 2017 Recent advances in organic thermally activated delayed fluorescence materials Chem. Soc. Rev. 46 915

    CAS  Google Scholar 

  41. Mieno H, Kabe R, Allendorf M D and Adachi C 2018 Thermally activated delayed fluorescence of a Zr-based metal-organic framework Chem. Commun. 54 631

    CAS  Google Scholar 

  42. Williams D E and Shustova N B 2015 Metal-organic frameworks as a versatile tool to study and model energy transfer processess Chem. Eur. J. 21 15474

    CAS  Google Scholar 

  43. So M C, Wiederrecht G P, Mondloch J E, Hupp J T and Farha O K 2015 Metal-organic framework materials for light harvesting and energy transfer Chem. Commun. 2015 3501

    Google Scholar 

  44. Lee C Y, Farha O K, Hong B J, Sarjeant A A, Nguyen S T and Hupp J T 2011 Light-harvesting metal-organic frameworks: Efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs J. Am. Chem. Soc. 133 15858

    CAS  PubMed  Google Scholar 

  45. Dolgopolova E A, Williams D E, Greytak A B, Rice A M, Smith M D, Krause J A, Shustova N B 2015 Fulleretic well-defined scaffolds: Donor-fullerene allignment through metal coordination and its effect on photophysics Angew. Chem. Int. Ed. 54 13639

    CAS  Google Scholar 

  46. Haldar R, Jakoby M, Mazel A, Zhang Q, Welle A, Mohamed T, Krolla P, Wenzel W, Diring S, Odobel F, Richards B S, Howard I A and Wöll C 2018 Anisotropic energy transfer in crystalline chromophore assembly Nat. Commun. 9 4332

    Google Scholar 

  47. Williams D E, Rietman J A, Maier J M, Tan R, Greytak A B, Smith M D, Krause J A and Shustova N B 2014 Energy tranfer on demand: Photoswitch directed behaviour of metal porphyrin framework J. Am. Chem. Soc. 136 11886

    CAS  PubMed  Google Scholar 

  48. Oldenburg M, Turshatov A, Busko D, Wollgarten S, Adams M, Baroni N, Welle A, Redel E, Wöll C, Richards B S and Howard I A 2016 Photon upconversion at crystalline organic-organic heterojunctions Adv. Mater. 28 8477

    CAS  Google Scholar 

  49. Medishetty R, Zaręba J K, Mayer D, Samoć M and Fischer R A 2017 Nonlinear optical properties, upconversion and lasing in metal-organic frameworks Chem. Soc. Rev. 46 4976

    CAS  Google Scholar 

  50. Mieno H, Kabe R, Notsuka N, Allendorf M D and Adachi C 2016 Long-lived room-teperature phosphorescence of coronene in ZIF-8 Adv. Opt. Mater. 4 1015

    CAS  Google Scholar 

  51. Williams D E, Dolgopolova E A, Pellechia P J, Palukoshka A, Wilson T J, Tan R, Maier J M, Greytak A B, Smith M D, Krause J A and Shustova N B 2015 Mimic of the green fluorescent protien β-barrel: Photophysics and dynmaics of confined chromophores defined by a rigid porous scaffold J. Am. Chem. Soc. 137 2223

    CAS  PubMed  Google Scholar 

  52. Baroni N, Turshatov A, Adams M, Dolgopolova E A, Schlisske S, Hernandez-Sosa G, Wöll C, Shustova N B, Richards B S and Howard I A 2018 Inkjet photoluminescent patterns of aggregation-induced emission chromophores on surface-anchored metal-organic frameworks ACS Appl. Mater. Interfaces 10 25754

    CAS  Google Scholar 

  53. Sun C-Y, Wang X-L, Zhang X, Qin C, Li P, Su Z-M, Zhu D-X, Shan G-G, Shao K-Z, Wu H and Li J 2013 Efficient and tunable white-light emission of metal-organic frameworks by inidium complex encapsulation Nat. Commun. 4 2717

    Google Scholar 

  54. Xie W, Qin J-S, He W-W, Shao K-Z, Su Z-M, Du D-Y, Li S-L, Lan Y-Q 2017 Encapsulation of a Iridium complex in metal-organic framework to give a composite with efficient white light emission Inorg. Chem. Front. 4 547

    CAS  Google Scholar 

  55. Yanai N, Kitayama K, Hijikata, Sato H, Matsuda R, Kubota Y, Takata M, Mizuno M, Uemura T and Kitagawa S 2011 Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer Nat. Mater. 10 787

    CAS  Google Scholar 

  56. Zhang Q, Zhang C, Cao L, Wang Z, An B, Lin Z, Huang R, Zhang Z, Wang C and Lin W 2016 Forster energy transfer in metal-organic frameworks is beyond step-by-step hopping J. Am. Chem. Soc. 138 5308

    CAS  PubMed  Google Scholar 

  57. Oldenburg M, Turshatov A, Busko D, Jakoby M, Haldar R, Chen K, Emandi G, Senge M. O, Wöll C, Hodgkiss J M, Richards B S and Howard I A 2018 Enhancing photoluminescence of surface-anchored metal-organic frameworks: mixed linkers and efficient acceptors Phys. Chem. Chem. Phys. 20 11564

    CAS  Google Scholar 

  58. Suresh V M, George S J and Maji T K 2013 MOF nanovesicles and toroids: Self-assembled porous soft hybrods for light harvesting Adv. Funct. Mater. 23 5585

    CAS  Google Scholar 

  59. Müller M, Devaux A, Yang C-H, De Cola L and Fischer R A 2010 Highly emissive metal-organic framework composites by host-guest chemistry Photochem. Photobiol. Sci. 9 846

    Google Scholar 

  60. Leong K, Foster M E, Wong B M, Spoerke E D, Van Gough D, Deaton J C and Allendorf M D 2014 Energy and charge transfer by donor-acceptor pairs confined in metal-organic framework: A spectroscopic and computational investigation J. Mater. Chem. A 2 3389

    CAS  Google Scholar 

  61. Dolgopolova E A, Rice A M, Smith M D and Shustova N B 2016 Photophysics, dynamics and energy transfer in rigid mimics of GFP systems Inorg. Chem. 55 7257

    CAS  Google Scholar 

  62. Mu Q, Liu J, Chen W, Song X, Liu X, Zhang X, Chang Z and Chen L 2019 A new biscarbazole-based metal-organic framework for efficient host-guest energy transfer Chem. Eur. J 25 1901

    CAS  Google Scholar 

  63. Allendorf M D, Medishetty R and Fischer R A 2016 Guest molecules as design element for metal-organic frameworks MRS Bull. 41 865

    Google Scholar 

  64. Yan D, Tang Y, Lin H and Wang D 2014 Tunable two-color luminescence and host-guest energy transfer of fluorescent chromophores encapsulated in metal-organic frameworks Sci. Rep. 4 4337

    Google Scholar 

  65. Haldar R, Prasad K, Hazra A and Maji T K 2019 Adaptive and guest responsive supramolecular porous framework: Solvent modulated energy transfer toward fingerprint sensing Cryst. Growth Des. 19 1514

    CAS  Google Scholar 

  66. Takashima Y, Martínez V M, Furukawa S, Kondo M, Shimomura S, Uehara H, Nakahama M, Sugimoto K and Kitagawa S 2011 Molecular decoding using luminescence from an entangled porous framework Nat. Commun. 2 168

    Google Scholar 

  67. Sikdar N, Jayaramulu K, Kiran V, Rao K V, Sampath S, George S J and Maji T K 2015 Redox active metal-organic frameworks: Highly stable charge separated states through strut/guest-to-strut electron transfer Chem. Eur. J. 21 11701

    CAS  Google Scholar 

  68. Wagner B D, McManus G J, Moulton B and Zaworotko M J 2002 Exciplex fluorescence of {[Zn(bipy)1.5(NO3)2}]·CH3OH·0.5pyrene}n: a coordination polymer containing intercalated pyrene molecules (bipy = 4,4′-bipyridine) Chem. Commun. 2176

  69. Tanaka D, Horike S, Kitagawa S, Ohba M, Hasegawa M, Ozawa Y and Toriumi K 2007 Anthracene array-type porous coordination polymer with host-guest charge transfer interactions in excited state Chem. Commun. 3142

  70. 70. Haldar R, Matsuda R, Kitagawa S, George S J and Maji T K 2014 Amine-responsive adaptable nanospaces: Fluorescent porous coordination polymer for molecular recognition Angew. Chem. Int. Ed. Engl. 53 11772

    CAS  Google Scholar 

  71. Horike S, Shimomura S and Kitagawa S 2009 Soft porous crystals Nat. Chem. 1 695

    CAS  PubMed  Google Scholar 

  72. Kanoo P, Haldar R, Sutar P, Chakraborty A and Maji T K 2017 In Functional supramolecular materials: From surfaces to MOFs R Banerjee (Ed.) (The Royal Society of Chemistry: UK) p. 412 [AU: Please check the publisher place and editor name is correct]. OK

  73. Haldar R, Reddy S K, Suresh V M, Mohapatra S, Balasubramanian S and Maji T K 2014 Flexible and rigid amine-functionalized microporous frameworks based on different secondary building units: Supramolecular isomerism, selective CO2 capture and catalysis Chem. Eur. J. 20 4347

    CAS  Google Scholar 

  74. Haldar R, Rao K V, George S J and Maji T K 2012 Exciplex formation and energy transfer in a self-assembled metal-organic hybrid system Chem. Eur. J. 18 5848

    CAS  Google Scholar 

  75. Haldar R, Prasad K, Samanta P K, Pati S and Maji T K 2016 Luminescent metal-organic complexes of pyrene and anthracene chromophores: energy transfer assisted amplified exciplex emission and Al3+ sensing Cryst. Growth Des. 16 82

    CAS  Google Scholar 

  76. Prasad K, Samanta D, Haldar R and Maji T K 2018 Excitation energy transfer supported amplified charge transfer emission in an anthracenedicarboxylate and bipyridophenazine-based coordination complex Inorg. Chem. 57 2953

    CAS  Google Scholar 

  77. Cui Y, Yue Y, Qian G and Chen B 2012 Luminescent functional metal-organic frameworks Chem. Rev. 112 1126

    CAS  PubMed  Google Scholar 

  78. Roy S, Chakraborty A and Maji T K 2014 Lanthanide-organic frameworks for gas storage and as magneto-luminescent materials Coord. Chem. Rev. 273-274 139

    Google Scholar 

  79. Cadman L K, Mahon M F and Burrows A D 2018 The effect of metal distribution on luminescence properties of mixed-lanthanide metal-organic frameworks Dalton Trans. 47 2360

    CAS  PubMed  Google Scholar 

  80. Moore E G, Samuel A P S and Raymond K N 2009 From antenna to assay: Lessons learned in lanthanide luminescence Acc. Chem. Res. 42 542

    CAS  Google Scholar 

  81. Luo F and Batten S R 2010 Metal-organic framework: Lanthanide doped approach for luminescene modulation and luminescent sensing Dalton Trans. 39 4485

    CAS  Google Scholar 

  82. Binnemans K 2009 Lanthanide based luminescent hybrid materials Chem. Rev. 109 4283

    CAS  Google Scholar 

  83. Mohapatra S, Adhikari S, Riju H and Maji T K 2012 Terbium(III), Europium(III), mixed Terbium(III)-Europium(III) mucicate frameworks: Hydrophilicity and stoichiometry dependent color tunability Inorg. Chem. 51 4891

    CAS  Google Scholar 

  84. Cui Y, Xu H, Yue Y, Guo Z, Yu J, Chen Z, Gao J, Yang Y, Qian G and Chen B 2012 A luminescent mixed-lathanide metal-organic framework thermometer J. Am. Chem. Soc. 134 3979

    CAS  PubMed  Google Scholar 

  85. Brites C D S, Lima P P, Silva N J O, Millán A, Amaral V S, Palacio F and Carlos L D, 2010 A luminescent molecular thermometer for long-term absolute temperature measurements at nanoscale Adv. Mater. 22 4499

    CAS  Google Scholar 

  86. Rao X, Song T, Gao J, Cui Y, Yang Y, Wu C, Chen B and Qian G 2013 A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer J. Am. Chem. Soc. 135 15559

    CAS  PubMed  Google Scholar 

  87. Zhang X, Fan L, Zhang W, Ding Y, Fan W and Zhao X 2013 A highly photocatalytic polyoxomolybdate compound constructed from novel type triple helix {Mo4O12}n chains and copper-organic nets Dalton Trans. 42 16562

  88. Shan X-C, Jiang F-L, Yuan D-Q, Zhang H-B, Wu M-Y, Chen L, Wei J, Zhang S-Q, Pan J and Hong M-C 2013 A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character Chem. Sci. 4 1484

    CAS  Google Scholar 

  89. Yadav A, Srivastava A K, Balamurugan A and Boomishankar R 2014 A cationic copper iodide cluster MOF exhibiting unusual ligand assisted thermochromism Dalton Trans. 43 8166

    CAS  PubMed  Google Scholar 

  90. Tachikawa T, Choi J R, Fujitsuka M and Majima T 2008 Photoinduced charge transfer processeson MOF-5 nanoparticles: Elucidating differences between metal-organic frameworks and semiconductor metal oxides J. Phys. Chem. C 112 14090

    CAS  Google Scholar 

  91. Stassen I, Styles M, Grenci G, Gorp Hans V, Vanderlinden W, Feyter Steven D, Falcaro P, Vos D D, Vereecken P and Ameloot R 2016 Chemical vapour deposition of zeolitic imidazolate framework thin films Nat. Mater. 15 304

    CAS  Google Scholar 

  92. Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann C, Evers F, Zacher D, Fischer R A and Wöll C 2007 Step-by-step route for the synthesis of metal-organic framework J. Am. Chem. Soc. 129 15118

    CAS  PubMed  Google Scholar 

  93. Stock N and Biswas S 2012 Synthesis of metal-organic frameworks: Routes to various MOF topologies, morphologies and composites Chem. Rev. 112 933

    CAS  Google Scholar 

  94. Tang Q, Liu S, Liu Y, He D, Miao J, Wang Y, Ji Y and Zheng Z 2014 Color tuning and white light emission via in situ doping of luminescent lanthandide metal-organic framework Inorg. Chem. 53 289

    CAS  Google Scholar 

  95. Zeng M, Zhan C and Yao J 2019 Novel bimetallic lanthanide metal-organic frameworks for color tuning through energy transfer between visble and near-infrared emitting Ln3+ ions J. Mat. Chem. C 7 2751

    CAS  Google Scholar 

  96. An Y-Y, Lu L-P, Feng S-S and Zhu M-L 2018 Efficient pure white light emission based on a three component La:Eu, Tb-doped luminescent lanthandide metal-organic framework Cryst. Eng. Comm. 20 2043

    CAS  Google Scholar 

  97. Igoa F, Peinado G, Suescun L, Kremer C and Torres J 2019 Design of a white-light emitting material based on a mixed lanthanide metal-organic framework J. Solid State Chem. 279 120925

    CAS  Google Scholar 

  98. Bhattacharyya S, Chakraborty A, Jayaramulu K, Hazra A and Maji T K 2014 A bimodal anionic MOF: turn-off sensing of CuII and specific sensitization of EuIII Chem. Commun. 50 13567

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Kumar Maji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, R., Bhattacharyya, S. & Maji, T.K. Luminescent metal–organic frameworks and their potential applications. J Chem Sci 132, 99 (2020). https://doi.org/10.1007/s12039-020-01797-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01797-y

Keywords

Navigation