Skip to main content
Log in

Controlled Bidirectional Quantum Teleportation of Arbitrary Single Qubit via a Non-maximally Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Because of the decoherence induced by surrounding environments, the maximally entangled state is usually difficult to prepare and maintain. In this study, a teleportation scheme was developed using a five-qubit non-maximally entangled state as the quantum channel. With Charlie’s permission, Alice and Bob could teleport a single-qubit state to each other deterministically. The scheme was introduced in a noiseless environment first. As we all know, when a non-maximally entangled state was used as the quantum channel, teleportation might fail, and the state to be transmitted would be destroyed. To solve this problem, in this scheme, an appropriate unitary tranasformation was performed on the non-maximally entangled state in advance with the help of an auxiliary qubit. Then, we analyzed the influence of the quantum noise on the fidelity of the desired state using the example of amplitude damping during the qubit distribution. Finally, we utilized the weak measurement and the corresponding reversing measurement to increase fidelity. The results showed that the weak measurement was an effective method for enhancing teleportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2
Figure. 3
Figure. 4
Figure. 5
Figure. 6

Similar content being viewed by others

References

  1. Li, Y., Zhou, R.-G., Xu, R., Luo, J., Hu, W.: A quantum deep convolutional neural network for image recognition. Quantum Sci. Technol. 5, 044003 (2020). https://doi.org/10.1088/2058-9565/ab9f93

  2. Y. Li, R. Zhou, R. Xu, J. Luo and S. Jiang. A quantum mechanics-based framework for EEG signal feature extraction and classification, IEEE Trans. Emerg. Top. Comput., https://doi.org/10.1109/TETC.2020.3000734

  3. Li, H.-S., Fan, P., Xia, H., Peng, H., Long, G.-L.: Efficient quantum arithmetic operation circuits for quantum image processing. Science China-Physics Mechanics & Astronomy. 63(8), 280311 (2020)

    Article  Google Scholar 

  4. Bennett, C.H., Brassard, G., Jozsa, R., Peres, A., Wootters, W.K., Crépeau, C.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bouwmeester, D., Mattle, K., Pan, J.W., Weinfurter, H., Zeilinger, A., Zukowski, M.: Experimental quantum teleportation of arbitrary quantum states. Appl. Phys. B Lasers Opt. 67, 749–752 (1998)

    Article  ADS  Google Scholar 

  6. Furusawa, A., Sorensen, J., Braunstein, S., Fuchs, C., Kimble, H., Polzik, E.: Unconditional quantum teleportation. Science. 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  7. Li, Y., Tu, J., Wen, K., Zhao, Y., Xu, J.: A coherent receiver based on SIM for quantum communication. IEEE Photon. Technol. Lett. 30, 27–30 (2017)

    Article  Google Scholar 

  8. Roy, S., Ghosh, B.: A revisit to non-maximally entangled mixed states: teleportation witness, noisy channel and discord. Quantum Inf. Process. 16, 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  9. Joy, D., Sabir, M.: Efficient schemes for the quantum teleportation of a sub-class of tripartite entangled states. Quantum Inf. Process. 17, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  10. Jiang, L.N.: Quantum teleportation under different collective noise environment. Int. J. Theor. Phys. 58, 522–530 (2019)

    Article  Google Scholar 

  11. Sang, M.H., Dai, H.L.: Controlled teleportation of an arbitrary three-qubit tate by using two four-qubit entangled states. Int. J. Theor. Phys. 53, 1930–1934 (2014)

    Article  Google Scholar 

  12. Hou, K., Bao, D.Q., Zhu, C.J., Yang, Y.P.: Controlled teleportation of an arbitrary two-qubit entanglement in noises environment. Quantum Inf. Process. 18, 104 (2019)

    Article  ADS  Google Scholar 

  13. Zhou, R.G., Xu, R., Lan, H.: Bidirectional quantum teleportation by using six-qubit cluster state. IEEE Access. 7, 44269–44275 (2019). https://doi.org/10.1109/ACCESS.2019.2901960

    Article  Google Scholar 

  14. Zhou, R.-G., Qian, C., Ian, H.: Cyclic and bidirectional quantum teleportation via pseudo multi-qubit states. IEEE Access. 7, 42445–42449 (2019)

    Article  Google Scholar 

  15. Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional quantum teleportation of a class of n-qubit states by using (2n + 2)-qubit entangled states as quantum channel. Int. J. Theor. Phys. 57, 175–183 (2018)

    Article  Google Scholar 

  16. Yang, G., Lian, B.W., Nie, M., Jin, J.: Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement. Chinese Phys. B. 26, (2017)

  17. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835–3844 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905–912 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835–3844 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, D.F., Wang, R.J., Zhang, F.L., Baagyere, E., Qin, Z., Xiong, H., Zhan, H.: A noise immunity controlled quantum teleportation protocol. Quantum Inf. Process. 15, 4819–4837 (2016)

    Article  ADS  Google Scholar 

  21. Zhou, R.G., Zhang, Y.N., Xu, R., Qian, C., Ian, H.: Asymmetric bidirectional controlled teleportation by using nine-qubit entangled state in noisy environment. IEEE Access. 7, 75247–75264 (2019)

    Article  Google Scholar 

  22. Sun, Y.R., Xu, G., Chen, X.B., Yang, Y., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of single- and three-qubit equatorial state in noisy environment. IEEE Access. 7, 2811–2822 (2019)

    Article  Google Scholar 

  23. Linden, N., Massar, S., Popescu, S.: Purifying noisy entanglement requires collective measurements. Phys.Rev.Lett. 81, 3279–3282 (1998)

    Article  ADS  Google Scholar 

  24. Li, W.-L., Li, C.-F., Guo, G.-C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A. 61, 1–4 (2000)

    Google Scholar 

  25. Lu, H., Guo, G.: Can: Teleportation of a two-particle entangled state via entanglement swapping. Phys. Lett. Sect. A Gen. At. Solid State Phys. 276, 209–212 (2000)

    MATH  Google Scholar 

  26. Lu, H.: Probabilistic teleportation of the three-particle entangled state via entanglement swapping. Chin. Phys. Lett. 18, (2001)

  27. Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. Sect. A Gen. At. Solid State Phys. 305, 12–17 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states. J. Opt. B Quantum Semiclassical Opt. 6, 106–109 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state. Opt. Commun. 231, 281–287 (2004)

    Article  ADS  Google Scholar 

  30. Han, L.F., Yuan, H.: Probabilistic teleportation of an arbitrary two-qubit state via one-dimensional four-qubit cluster-class state. Int. J. Quantum Inf. 6, 1093–1099 (2008)

    Article  Google Scholar 

  31. Yu, L.Z., Wu, T.: Probabilistic teleportation of three-qubit entangled state via five-qubit cluster state. Int. J. Theor. Phys. 52, 1461–1465 (2013)

    Article  MathSciNet  Google Scholar 

  32. Choudhury, B.S., Dhara, A.: Probabilistically teleporting arbitrary two-qubit states. Quantum Inf. Process. 15, 5063–5071 (2016)

    Article  ADS  Google Scholar 

  33. Gou, Y.T., Shi, H.L., Wang, X.H., Liu, S.Y.: Probabilistic resumable bidirectional quantum teleportation. Quantum Inf. Process. 16, 1–13 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Wei, J., Shi, L., Han, C., Xu, Z., Zhu, Y., Wang, G., Wu, H.: Probabilistic teleportation via multi-parameter measurements and partially entangled states. Quantum Inf. Process. 17, 1–8 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  36. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  37. Kraus, K.: General state changes in quantum theory[J]. Ann. Phys. 64(2), 311–335 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  38. Lee, J. C., Jeong, Y. C., Kim, Y. S., Kim, Y. H.: Experimental Demonstration of Decoherence Suppression by Quantum Measurement Reversal. In: Optics InfoBase Conference Papers (2011)

  39. Yan, A.: Bidirectional controlled teleportation via six-Qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013)

    Article  MathSciNet  Google Scholar 

  40. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. Sect. A Gen. At. Solid State Phys. 376, 2944–2950 (2012)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Plan under Grant No. 2018YFC1200200 and 2018YFC1200205; Natural Science Foundation of Hunan Provincial of China under Grant No. 2020JJ4557; Scientific Research Fund of Anhui Provincial Education Department under Grant No. KJ2018A0084; Natural Science Foundation of Jiangxi Province of China under Grant No. 20192BAB207014; Science and Technology Research Project of Jiangxi Provincial Education Department under Grant No. GJJ190297;The Fund for Distinguished Young Scholars of Jiangxi Province under Grant No.2018ACB21013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, SX., Zhou, RG., Luo, G. et al. Controlled Bidirectional Quantum Teleportation of Arbitrary Single Qubit via a Non-maximally Entangled State. Int J Theor Phys 59, 2966–2983 (2020). https://doi.org/10.1007/s10773-020-04557-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04557-3

Keywords

Navigation