Skip to main content
Log in

A Comparative Study on the Performance of FEM, RA and ANN Methods in Strength Prediction of Pallet-Rack Stub Columns

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

The rack column is one of the essential elements in the pallet rack system. However, due to its distinctive perforation feature, it is challenging to analyze its stability using traditional theories for cold-formed steel structures. In this paper, we are interested in the comparison analysis of strength prediction on the perforated columns using finite element method (FEM), regression analysis (RA) and artificial neural network (ANN) methods respectively. First, a refined finite element (FE) model considering the perforation and nonlinearity behavior was generated and calibrated against the experimental results. Subsequently, the validated FE model was used to perform the parametric analysis for the different holes in columns. Given experimental and simulated data, a regression model with an equivalent thickness was proposed for the design strength prediction of thin-walled steel perforated sections. For comparison of the RA model, two powerful tools such as the FEM and ANN are also employed to predict the design strength of different perforated sections. Four indicators were used to assess the accuracy and generalization performance of the three models, including the root mean square error, the mean absolute percentage error, the correlation coefficient and the mean relative percentage. The obtained results show that although they both have good consistency, FEM still slightly outperforms the other two models. Since the values calculated from ANN and regression models are usually smaller than the experimental data, they are reasonably recommended as effective and safer design tools than FEM models from the perspective of engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alberto Prieto n., Beatriz Prieto, Eva Martinez Ortigosa, et al. (2016). Neural networks: an overview of early research, current frameworks and new challenges, Neuro computing,214, 242–268.

  • Al-Jabri, K. S., & Al-Alawi, S. M. (2010). An advanced ANN model for predicting the rotational behaviour of semi-rigid composite joints in fire using the back-propagation paradigm. International Journal of Steel Structures, 10(4), 337–347.

    Article  Google Scholar 

  • ANSYS Inc. (2010). ANSYS mechanical APDL structural analysis guide. ANSYS release 13.0, USA.

  • Baldassino, N., Bernuzzi, C., Di Gioia, A., & Simoncelli, M. (2019). An experimental investigation on solid and perforated steel storage racks uprights. Journal of Constructional Steel Research, 155, 409–425.

    Article  Google Scholar 

  • Bernuzzi, C., & Maxenti, F. (2015). European alternatives to design perforated thin-walled cold-formed beam–columns for steel storage systems. Journal of Constructional Steel Research, 110, 121–136.

    Article  Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • British Standard EN 1993-1-3:2006. (2006). Eurocode 3Design of steel structuresPart 13: General rulesSupplementary rules for cold-formed members and sheeting.

  • Casafont, M., Pastor, M., Bonada, J., et al. (2012). Linear buckling analysis of perforated steel storage rack columns with the Finite Strip Method. Thin-Walled Structures, 61, 71–85.

    Article  Google Scholar 

  • Chojaczyka, A. A., Teixeira, A. P., Neves, L. C., Cardoso, J. B., & Guedes Soares, C. (2015). Review and application of artificial neural networks models in reliability analysis of steel structures. Structural Safety, 52, 78–89.

    Article  Google Scholar 

  • Davies, J. M., Leach, P., & Taylor, A. (1997). The design of perforated cold-formed steel sections subject to axial load and bending. Thin-Walled Structures, 29, 141–157.

    Article  Google Scholar 

  • Elias, G. C., et al. (2018). Ultimate load of steel storage systems uprights. Engineering Structures, 170, 53–62.

    Article  Google Scholar 

  • El-Kassas, E. M. A., Mackie, R. I., & El-Sheikh, A. I. (2001). Using networks in cold-formed steel design. Computer and Structures, 79, 1687–1696.

    Article  Google Scholar 

  • European Standard EN 15512:2009. (2009). Steel static storage systemsAdjustable pallet racking systemsPrinciples for structural design. Brussels: European Committee for standardization.

  • European Standard EN 1993-1-5:2006. (2009). Eurocode 3Design of steel structuresPart 15: Plated structural elements.

  • Freitas, A. M. S., Freitas, M. S. R., & Souza, F. T. (2005). Analysis of steel storage rack columns. Journal of Constructional Steel Research, 61, 1135–1146.

    Article  Google Scholar 

  • GB 50017-2003. (2003). Code for design of steel structures (in Chinese).

  • GB/T228.1-2002. (2002). Metal tensile test method (in Chinese).

  • Kulatunga, M. P., & Macdonald, M. (2013). Investigation of cold-formed steel structural members with perforations of different arrangements subjected to compression loading. Thin-Walled Structures, 67, 78–87.

    Article  Google Scholar 

  • Martins, A. D., Camotim, D., & Dinis, P. B. (2017). On the direct strength design of cold-formed steel columns failing in local distortional interactive modes. Thin-Walled Structures, 120, 432–445.

    Article  Google Scholar 

  • MATLAB. (2017). UserGuide. Retrieved from http://www.mathworks.com/support.

  • Nedelcu, M. (2014). Buckling mode identification of perforated thin-walled members by using GBT and shell FEA. Thin-Walled Structure, 82, 67–81.

    Article  Google Scholar 

  • Papangelis, J. P., & Hancock, G. J. (1995). Computer analysis of thin-walled structural members. Computers & Structures, 56, 157–176.

    Article  Google Scholar 

  • Pastor, M. M., Casafont, M., Bonada, J., & Roure, F. (2014). Imperfection amplitudes for nonlinear analysis of open thin-walled steel cross-sections used in rack column uprights. Thin-Walled Structures, 76, 28–41.

    Article  Google Scholar 

  • Roure, F., Pastor, M. M., Casafont, M., & Somalo, M. R. (2011). Stub column tests for racking design: Experimental testing, FE analysis and EC3. Thin-Walled Structures, 49, 167–184.

    Article  Google Scholar 

  • Saaty, T. L. (1994). How to make a decision: the analytic hierarchy process. Interfaces, 14, 19–43.

    Article  Google Scholar 

  • Schafer, B. W., & Ádány, S. (2006). Buckling analysis of cold-formed steel members using cufsm: Conventional and constrained finite strip methods. Rolla: University of Missouri-Rolla.

    Google Scholar 

  • Shah, S. N. R., RamliSulong, N. H., Jumaat, M. Z., et al. (2016). State of the art review on the design and performance of steel pallet rack connections. Engineering Failure Analysis, 66, 240–258.

    Article  Google Scholar 

  • Stoffel, M., Bamer, F., & Markert, B. (2018). Artificial neural networks and intelligent finite elements in non-linear structural mechanics. Thin-Walled Structures, 131, 102–106.

    Article  Google Scholar 

  • Yao, X., Guo, Y., & Li, Y. (2016). Effective width method for distortional buckling design of cold-formed lipped channel sections. Thin-Walled Structures, 109, 344–351.

    Article  Google Scholar 

  • Zhang, P., & Alam, M. S. (2017). Experimental investigation and numerical simulation of pallet-rack stub columns under compression load. Journal of Constructional Steel Research, 133, 282–299.

    Article  Google Scholar 

  • Zhao, X., Rena, C., & Qin, R. (2017). An experimental investigation into perforated and non-perforated steel storage rack uprights. Thin-Walled Structures, 112, 159–172.

    Article  Google Scholar 

Download references

Acknowledgements

The writers gratefully acknowledge the financial support provided by National Key R&D Program of China (2017YFB1304000), Shanghai Sailing Program (19YF1401600), Research Program of Shanghai Science and Technology Committee (17DZ2283800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiJun Lyu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Column type

Parameter

WW (mm)

CT (mm)

FW (mm)

OS (mm)

CL (mm)

RHA (%)

BN

RAN

RN

DSC (MPa)

M45-1.5

45

1.5

45

25

300

18.205

8

4

0

225.24

M45-1.5

45

1.5

45

25

300

16.472

8

4

0

228.85

M45-1.5

45

1.5

45

25

300

15.605

8

4

0

229.27

M60-1.8

60

1.8

55

34

350

16.525

8

4

0

300.16

M60-1.8

60

1.8

55

34

350

14.951

8

4

0

303.07

M60-1.8

60

1.8

55

34

350

14.164

8

4

0

303.89

M60-2

60

2.0

55

34

350

16.525

8

4

0

316.94

M60-2

60

2.0

55

34

350

14.951

8

4

0

315.39

M60-2

60

2.0

55

34

350

14.164

8

4

0

316.6

M75-1.8

75

1.8

58

45

400

14.222

12

4

1

302.28

M75-1.8

75

1.8

58

45

400

12.868

12

4

1

312.62

M75-1.8

75

1.8

58

45

400

12.190

12

4

1

313.68

M75-2

75

2.0

58

45

400

14.222

12

4

1

317.84

M75-2

75

2.0

58

45

400

12.868

12

4

1

322.13

M75-2

75

2.0

58

45

400

12.190

12

4

1

323.76

M90A-1.8

90

1.8

65

50

400

11.852

12

4

1

289.59

M90A-1.8

90

1.8

65

50

400

10.723

12

4

1

292.44

M90A-1.8

90

1.8

65

50

400

10.159

12

4

1

294.01

M90A-2

90

2.0

65

50

400

11.287

12

4

1

276.06

M90A-2

90

2.0

65

50

400

11.852

12

4

1

275.33

M90A-2

90

2.0

65

50

400

10.723

12

4

1

277.98

M90A-2

90

1.8

78

50

400

11.287

12

4

1

282.89

M90B-1.8

90

1.8

78

50

400

11.852

12

4

1

274.31

M90B-1.8

90

1.8

78

50

400

10.723

12

4

1

282.59

M90B-1.8

90

1.8

78

50

400

10.159

12

4

1

283.99

M90B-1.8

90

2.0

78

50

400

11.287

12

4

1

282.54

M90B-2

90

2.0

78

50

400

11.852

12

4

1

273.19

M90B-2

90

2.0

78

50

400

10.723

12

4

1

275.43

M90B-2

90

2.0

78

50

400

10.159

12

4

1

276.71

M100A-2

100

2.0

90

52

400

10.667

20

4

3

279.81

M100A-2

100

2.0

90

52

400

9.651

20

4

3

289.77

M100A-2

100

2.0

90

52

400

9.143

20

4

3

290.68

M100A-2.5

100

2.5

90

52

400

10.667

20

4

3

251.97

M100A-2.5

100

2.5

90

52

400

9.651

20

4

3

254.15

M100A-2.5

100

2.5

90

52

400

9.143

20

4

3

255.42

M100A-2.5

100

2.0

100

52

400

10.159

12

4

1

260.49

M100B-2

100

2.0

100

52

400

10.667

12

4

1

236.7

M100B-2

100

2.0

100

52

400

9.651

12

4

1

238.26

M100B-2

100

2.0

100

52

400

9.143

12

4

1

239.85

M100B-2

100

2.5

100

52

400

10.159

12

4

1

249.98

M100B-2.5

100

2.5

100

52

400

10.667

12

4

1

255.99

M100B-2.5

100

2.5

100

52

400

9.651

12

4

1

256.78

M100B-2.5

100

2.5

100

52

400

9.143

12

4

1

259.57

M100C-2

100

2.0

130

52

500

10.159

20

4

3

236.12

M100C-2

100

2.0

130

52

500

10.667

20

4

3

234.98

M100C-2

100

2.0

130

52

500

9.651

20

4

3

237.25

M100C-2

100

2.0

130

52

500

9.143

20

4

3

235.52

M100C-3

100

3.0

130

52

500

10.667

20

4

3

281.78

M100C-3.5

100

3.0

130

52

500

9.651

20

4

3

304.92

M100C-3.5

100

3.0

130

52

500

9.143

20

4

3

305.71

M120-2.5

120

2.5

95

76

500

8.466

12

4

1

274.23

M120-2.5

120

2.5

95

76

500

8.042

12

4

1

275.73

M120-2.5

120

2.5

95

76

500

7.619

12

4

1

276.97

M120-3

120

3.0

95

76

500

8.466

12

4

1

257.01

M120-3

120

3.0

95

76

500

8.889

12

4

1

256.75

M120-3

120

3.0

95

76

500

8.042

12

4

1

259.56

M120-3

120

3.0

95

76

500

7.619

12

4

1

262.63

M120-3.5

120

3.5

150

76

500

8.889

20

4

3

264.12

M120-3.5

120

3.5

150

76

500

8.042

20

4

3

267.17

M120-3.5

120

3.5

150

76

500

7.619

20

4

3

268.12

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Z., Zhang, J., Zhao, N. et al. A Comparative Study on the Performance of FEM, RA and ANN Methods in Strength Prediction of Pallet-Rack Stub Columns. Int J Steel Struct 20, 1509–1526 (2020). https://doi.org/10.1007/s13296-020-00386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-020-00386-6

Keywords

Navigation