Skip to main content

Advertisement

Log in

Inhibition of JAK-STAT Signaling by Baricitinib Reduces Interferon-γ-Induced CXCL10 Production in Human Salivary Gland Ductal Cells

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sjögren’s syndrome (SS) is a chronic autoimmune disease targeting salivary and lacrimal glands. C-X-C motif chemokine ligand 10 (CXCL10) expression is upregulated in lip salivary glands (LSGs) of primary SS (pSS) patients, and CXCL10 involved in SS pathogenesis via immune-cell accumulation. Moreover, interferon (IFN)-γ enhances CXCL10 production via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. We investigated the effects of baricitinib, a selective JAK1/2 inhibitor, on both IFN-γ-induced CXCL10 production and immune-cell chemotaxis. We used immunohistochemical staining to determine the expression levels and localization of JAK1 and JAK2 in LSGs of SS patients (n = 12) and healthy controls (n = 3). We then evaluated the effect of baricitinib in an immortalized normal human salivary gland ductal (NS-SV-DC) cell line. Immunohistochemical analysis of LSGs from pSS patients revealed strong JAK1 and JAK2 expression in ductal and acinar cells, respectively. Baricitinib significantly inhibited IFN-γ-induced CXCL10 expression as well as the protein levels in an immortalized human salivary gland ductal-cell clone in a dose-dependent manner. Additionally, western blot analysis showed that baricitinib suppressed the IFN-γ-induced phosphorylation of STAT1 and STAT3, with a stronger effect observed in the case of STAT1. It also inhibited IFN-γ-mediated chemotaxis of Jurkat T cells. These results suggested that baricitinib suppressed IFN-γ-induced CXCL10 expression and attenuated immune-cell chemotaxis by inhibiting JAK/STAT signaling, suggesting its potential as a therapeutic strategy for pSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Alspaugh, M.A., and K. Whaley. 1981. Sjögren’s syndrome. In Textbook of Rheumatology, ed. W.N. Kelley, E.D. Harris, S. Ruddy, and C.B. Sledge, 971–999. Philadelphia: Saunders (imprint).

    Google Scholar 

  2. Vivino, F.B., V.Y. Bunya, G. Massaro-Giordano, C.R. Johr, S.L. Giattino, A. Schorpion, B. Shafer, A. Peck, K. Sivils, A. Rasmussen, J.A. Chiorini, J. He, and J.L. Ambrus Jr. 2019. Sjögren’s syndrome: An update on disease pathogenesis, clinical manifestations and treatment. Clinical Immunology 203: 81–121.

    CAS  PubMed  Google Scholar 

  3. Daniel, T.E. 1984. Labial salivary gland biopsy in Sjögren’s syndrome. Assessment as a diagnostic criterion in 362 suspected cases. Arthritis and Rheumatism 27: 147–156.

    Google Scholar 

  4. Christodoulou, M.I., E.K. Kapsogeorgou, and H.M. Moutsopoulos. 2010. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. Journal of Autoimmunity 34: 400–407.

    CAS  PubMed  Google Scholar 

  5. Kamiński, B. 2019. Laryngological manifestations of Sjögren’s syndrome. Reumatologia 57: 37–44.

    PubMed  PubMed Central  Google Scholar 

  6. Nocturne, G., and X. Mariette. 2013. Advances in understanding the pathogenesis of primary Sjögren’s syndrome. Nature Reviews. Rheumatology 9: 544–556.

    CAS  PubMed  Google Scholar 

  7. Brkic, Z., N.I. Maria, C.G. van Helden-Meeuwsen, J.P. van de Merwe, P.L. van Daele, V.A. Dalm, M.E. Wildenberg, W. Beumer, H.A. Drexhage, and M.A. Versnel. 2013. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren’s syndrome and association with disease activity and BAFF gene expression. Annals of the Rheumatic Diseases 72: 728–735.

    CAS  PubMed  Google Scholar 

  8. Hjelmervik, T.O., K. Petersen, I. Jonassen, R. Jonsson, and A.I. Bolstad. 2005. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis and Rheumatism 52: 1534–1544.

    CAS  PubMed  Google Scholar 

  9. Wakamatsu, E., Y. Nakamura, I. Matsumoto, D. Goto, S. Ito, A. Tsutsumi, and T. Sumida. 2007. DNA Microarray Analysis of Labial Salivary Glands of Patients With Sjögren’s Syndrome. Annals of the Rheumatic Diseases 66: 844–845.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Imgenberg-Kreuz, J., J.K. Sandling, J.C. Almlöf, J. Nordlund, L. Signér, K.B. Norheim, R. Omdal, L. Rönnblom, M.L. Eloranta, A.C. Syvänen, and G. Nordmark. 2016. Genome-wide DNA methylation analysis in multiple tissues in primary Sjögren’s syndrome reveals regulatory effects at interferon-induced genes. Annals of the Rheumatic Diseases 75: 2029–2036.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hall, J.C., A.N. Baer, A.A. Shah, L.A. Criswell, C.H. Shiboski, A. Rosen, and L. Casciola-Rosen. 2015. Molecular subsetting of interferon pathways in Sjögren’s syndrome. Arthritis and Rheumatology 67: 2437–2446.

    CAS  PubMed  Google Scholar 

  12. Luster, A.D., J.C. Unkeless, and J.V. Ravetch. 1985. γ-Interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315: 672–676.

    CAS  PubMed  Google Scholar 

  13. Antonelli, A., S.M. Ferrari, D. Giuggioli, E. Ferrannini, C. Ferri, and P. Fallahi. 2014. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmunity Reviews 13: 272–280.

    CAS  PubMed  Google Scholar 

  14. Ogawa, N., L. Ping, L. Zhenjun, Y. Takada, and S. Sugai. 2002. Involvement of the interferon-γ-induced T cell-attracting chemokines, interferon-γ-inducible 10-kd protein (CXCL10) and monokine induced by interferon-γ (CXCL9), in the salivary gland lesions of patients with Sjögren’s syndrome. Arthritis and Rheumatism 46: 2730–2741.

    CAS  PubMed  Google Scholar 

  15. Aota, K., T. Yamanoi, K. Kani, K.I. Nakashiro, N. Ishimaru, and M. Azuma. 2018. Inverse correlation between the number of CXCR3+ macrophages and the severity of inflammatory lesions in Sjögren’s syndrome salivary glands: A pilot study. Journal of Oral Pathology and Medicine 47: 710–718.

    CAS  PubMed  Google Scholar 

  16. Aota, K., K. Kani, T. Yamanoi, K.I. Nakashiro, N. Ishimaru, and M. Azuma. 2018. Distinct regulation of CXCL10 production by cytokines in human salivary gland ductal and acinar cells. Inflammation 41: 1172–1181.

    CAS  PubMed  Google Scholar 

  17. Leonard, W.J., and J.J. O’Shea. 1998. Jaks and STATs: Biological implications. Annual Review of Immunology 16: 293–322.

    CAS  PubMed  Google Scholar 

  18. Pringle, S., X. Wang, H. Bootsma, F.K.L. Spijkervet, A. Vissink, and F.G.M. Kroese. 2019. Small-molecule inhibitors and the salivary gland epithelium in Sjögren’s syndrome. Expert Opinion on Investigational Drugs 28: 605–616.

    CAS  PubMed  Google Scholar 

  19. Kubo, S., S. Nakayamada, and Y. Tanaka. 2016. Baricitinib for the treatment of rheumatoid arthritis. Expert Review of Clinical Immunology 12: 911–919.

    CAS  PubMed  Google Scholar 

  20. Taylor, P.C., E.C. Keystone, D. van der Heijde, M.E. Weinblatt, L. Del Carmen MoralesL, J. Reyes Gonzaga, S. Yakushin, T. Ishii, K. Emoto, S. Beattie, V. Arora, C. Gaich, T. Rooney, D. Schlichting, W.L. Macias, S. de Bono, and Y. Tanaka. 2017. Baricitinib versus Placebo or adalimumab in rheumatoid arthritis. The New England Journal of Medicine 16 (376): 652–662.

    Google Scholar 

  21. Fujibayashi, T., S. Sugai, N. Miyasaka, Y. Hayashi, and K. Tsubota. 2004. Revised Japanese criteria for Sjögren’s syndrome (1999): Availability and validity. Modern Rheumatology 14: 425–434.

    PubMed  Google Scholar 

  22. Shiboski, S.C., C.H. Shiboski, L.A. Criswell, A.N. Baer, S. Challacombe, H. Lanfranchi, M. Schiødt, H. Umehara, F. Vivino, Y. Zhao, Y. Dong, D. Greenspan, A.M. Heidenreich, P. Helin, B. Kirkham, K. Kitagawa, G. Larkin, M. Li, T. Lietman, J. Lindegaard, N. McNamara, K. Sack, P. Shirlaw, S. Sugai, C. Vollenweider, J. Whitcher, A. Wu, S. Zhang, W. Zhang, J.S. Greenspan, and T.E. Daniels for the Sjögren’s International Collaborative Clinical Alliance (SICCA) Research Groups. 2012. American College of Rheumatology classification criteria for Sjögren’s syndrome: A data-driven, expert consensus approach in the Sjögren’s International Collaborative Clinical Alliance cohort. Arthritis Care and Research 64: 475–487.

    CAS  PubMed  Google Scholar 

  23. Tarpley, T.M., Jr., L.G. Anderson, and C.L. White. 1974. Minor salivary gland involvement in Sjögren’s syndrome. Oral Surgery, Oral Medicine, and Oral Pathology 37: 64–74.

    PubMed  Google Scholar 

  24. Azuma, M., T. Tamatani, Y. Kasai, and M. Sato. 1993. Immortalization of normal human salivary gland cells with duct-, myoepithelial-, acinar-, or squamous phenotype by transfection with SV40 ori- mutant deoxyribonucleic acid. Laboratory Investigation 69: 24–42.

    CAS  PubMed  Google Scholar 

  25. Yamaoka, K., P. Saharinen, M. Pesu, V.E. Holt 3rd, O.J. Silvennoinen, and J.J. O’Shea. 2004. The Janus Kinases (Jaks). Genome Biology 5: 253.

    PubMed  PubMed Central  Google Scholar 

  26. Fox, R.I., C.M. Fox, J.E. Gottenberg, and T. Dörner. 2019. Treatment of Sjögren’s syndrome: current therapy and future directions. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/kez142.

Download references

Funding

This work was supported by the Grants-in-Aid for Scientific Research program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (No. 19K10311).

Author information

Authors and Affiliations

Authors

Contributions

Keiko Aota and Masayuki Azuma contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Keiko Aota, Tomoko Yamanoi, Koichi Kani, Shinji Ono, and Yukihiro Momota. The first draft of the manuscript was written by Keiko Aota and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Keiko Aota.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board of Tokushima University Hospital (#2802) and with the 1964 Helsinki declaration and its later amendments.

Consent to Participate

Written informed consent was obtained from all individual participants included in the study, and this process was documented by the Institutional Review Board of Tokushima University Hospital. The informed consent procedure was approved by the Ethics Committee of Tokushima University Hospital.

Consent for Publication

Authorization has been given from all authors to use unpublished data.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aota, K., Yamanoi, T., Kani, K. et al. Inhibition of JAK-STAT Signaling by Baricitinib Reduces Interferon-γ-Induced CXCL10 Production in Human Salivary Gland Ductal Cells. Inflammation 44, 206–216 (2021). https://doi.org/10.1007/s10753-020-01322-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01322-w

KEY WORDS

Navigation