Skip to main content

Advertisement

Log in

The de Rham–Hodge Analysis and Modeling of Biomolecules

  • Original Paper
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Biological macromolecules have intricate structures that underpin their biological functions. Understanding their structure–function relationships remains a challenge due to their structural complexity and functional variability. Although de Rham–Hodge theory, a landmark of twentieth-century mathematics, has had a tremendous impact on mathematics and physics, it has not been devised for macromolecular modeling and analysis. In this work, we introduce de Rham–Hodge theory as a unified paradigm for analyzing the geometry, topology, flexibility, and Hodge mode analysis of biological macromolecules. Geometric characteristics and topological invariants are obtained either from the Helmholtz–Hodge decomposition of the scalar, vector, and/or tensor fields of a macromolecule or from the spectral analysis of various Laplace–de Rham operators defined on the molecular manifolds. We propose Laplace–de Rham spectral-based models for predicting macromolecular flexibility. We further construct a Laplace–de Rham–Helfrich operator for revealing cryo-EM natural frequencies. Extensive experiments are carried out to demonstrate that the proposed de Rham–Hodge paradigm is one of the most versatile tools for the multiscale modeling and analysis of biological macromolecules and subcellular organelles. Accurate, reliable, and topological structure-preserving algorithms for implementing discrete exterior calculus (DEC) have been developed to facilitate the aforementioned modeling and analysis of biological macromolecules. The proposed de Rham–Hodge paradigm has potential applications to subcellular organelles and the structure construction from medium- or low-resolution cryo-EM maps, and functional predictions from massive biomolecular datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alexov E, Mehler EL, Baker N, Baptista AM, Huang Y, Milletti F, Erik Nielsen J, Farrell D, Carstensen T, Olsson MH et al (2011) Progress in the prediction of pka values in proteins. Proteins Struct Funct Bioinf 79(12):3260–3275

    Google Scholar 

  • Antosiewicz J, McCammon JA, Gilson MK (1996) The determinants of p\(K_a\)s in proteins. Biochemistry 35(24):7819–7833

    Google Scholar 

  • Arnold DN, Falk RS, Winther R (2006) Finite element exterior calculus, homological techniques, and applications. Acta Numer 15:1–155

    MathSciNet  MATH  Google Scholar 

  • Atilgan AR, Durell S, Jernigan RL, Demirel M, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80(1):505–515

    Google Scholar 

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Nat Acad Sci USA 98(18):10037–10041

    Google Scholar 

  • Baradaran R, Wang C, Siliciano AF, Long SB (2018) Cryo-em structures of fungal and metazoan mitochondrial calcium uniporters. Nature 559(7715):580–584

    Google Scholar 

  • Bates PW, Wei GW, Zhao S (2008) Minimal molecular surfaces and their applications. J Comput Chem 29(3):380–91

    Google Scholar 

  • Bhatia H, Norgard G, Pascucci V, Bremer P-T (2013) The helmholtz-hodge decomposition-a survey. IEEE Trans Vis Comput Graphics 19(8):1386–1404

    Google Scholar 

  • Blinn JF (1982) A generalization of algebraic surface drawing. ACM Trans Graph 1:235–256

    Google Scholar 

  • Bossavit A (1988) Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc A (Phys Sci Meas Instrum Manag Educ Rev) 135(8):493–500

    Google Scholar 

  • Bott R, Tu LW (2013) Differential forms in algebraic topology, vol 82. Springer, Berlin

    MATH  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States D, Swaminathan S, Karplus M (1983) Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Google Scholar 

  • Cang ZX, Wei GW (2017) TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput Biol 13(7):e1005690. https://doi.org/10.1371/journal.pcbi.1005690

    Article  Google Scholar 

  • Cang ZX, Wei GW (2018) Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction. Int J Numer Methods Biomed Eng. https://doi.org/10.1002/cnm.2914

    Article  Google Scholar 

  • Cantarella J, DeTurck D, Gluck H (2002) Vector calculus and the topology of domains in 3-space. Am Math Mon 109(5):409–442

    MathSciNet  MATH  Google Scholar 

  • Carlsson G, Zomorodian A, Collins A, Guibas LJ (2005) Persistence barcodes for shapes. Int J Shape Model 11(2):149–187

    MATH  Google Scholar 

  • Chen D, Chen Z, Chen C, Geng WH, Wei GW (2011) MIBPB: a software package for electrostatic analysis. J Comput Chem 32:657–670

    Google Scholar 

  • Chen J, Geng W (2018) On preconditioning the treecode-accelerated boundary integral (tabi) Poisson–Boltzmann solver. J Comput Phys 373:750–762

    MathSciNet  MATH  Google Scholar 

  • Chen M, Tu B, Lu B (2012) Triangulated manifold meshing method preserving molecular surface topology. J Mole Graph Model 38:411–418

    Google Scholar 

  • Cheng H-L, Shi X (2009) Quality mesh generation for molecular skin surfaces using restricted union of balls. Comput Geom 42(3):196–206

    MathSciNet  MATH  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK et al (2007) High-resolution crystal structure of an engineered human \(\beta \)2-adrenergic g protein–coupled receptor. Science 318(5854):1258–1265

    Google Scholar 

  • Corey RB, Pauling L (1953) Molecular models of amino acids, peptides, and proteins. Rev Sci Instrum 24(8):621–627

    Google Scholar 

  • De La Torre JG, Bloomfield VA (1977) Hydrodynamic properties of macromolecular complexes. i. translation. Biopolym Original Res Biomol 16(8):1747–1763

    Google Scholar 

  • Demlow A, Hirani AN (2014) A posteriori error estimates for finite element exterior calculus: the de rham complex. Found Comput Math 14(6):1337–1371

    MathSciNet  MATH  Google Scholar 

  • Desbrun M, Hirani AN, Leok M, Marsden JE (2005) Discrete exterior calculus. arXiv preprint math/0508341

  • Dey TK, Fan F, Wang Y (2013) An efficient computation of handle and tunnel loops via reeb graphs. ACM Trans Graph 32(4):32

    MATH  Google Scholar 

  • Dong F, Vijaykumar M, Zhou HX (2003) Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of barnase and barstar. Biophys J 85(1):49–60

    Google Scholar 

  • Du Q, Liu C, Wang X (2004) A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J Comput Phys 198(2):450–468

    MathSciNet  MATH  Google Scholar 

  • Duncan BS, Olson AD (1993) Shape analysis of molecular surfaces. Biopolymers 33(2):231–8

    Google Scholar 

  • Edelsbrunner H, Harer J (2010) Computational topology: an introduction. American Mathematical Soc, Providence

    MATH  Google Scholar 

  • Edelsbrunner H, Letscher D, Zomorodian A (2000) Topological persistence and simplification. In: 41st annual symposium on foundations of computer science, 2000. Proceedings. IEEE, pp 454–463

  • Feng X, Xia K, Tong Y, Wei G-W (2012) Geometric modeling of subcellular structures, organelles and large multiprotein complexes. Int J Numer Methods Biomed Eng 28:1198–1223

    MathSciNet  Google Scholar 

  • Fogolari F, Brigo A, Molinari H (2002) The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recognit 15(6):377–92

    Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254(5038):1598–1603

    Google Scholar 

  • Geng W, Krasny R (2013) A treecode-accelerated boundary integral poisson-boltzmann solver for electrostatics of solvated biomolecules. J Comput Phys 247:62–78

    MathSciNet  MATH  Google Scholar 

  • Go N, Noguti T, Nishikawa T (1983) Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci 80:3696–3700

    Google Scholar 

  • Hanawa-Suetsugu K, Sekine S-I, Sakai H, Hori-Takemoto C, Terada T, Unzai S, Tame JR, Kuramitsu S, Shirouzu M, Yokoyama S (2004) Crystal structure of elongation factor p from thermus thermophilus hb8. Proc Nat Acad Sci 101(26):9595–9600

    Google Scholar 

  • Haslam D, Zeng T, Li R, He J (2018) Exploratory studies detecting secondary structures in medium resolution 3d cryo-em images using deep convolutional neural networks. In: Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics. ACM, pp 628–632

  • Hekstra DR, White KI, Socolich MA, Henning RW, Šrajer V, Ranganathan R (2016) Electric-field-stimulated protein mechanics. Nature 540(7633):400

    Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung Teil C 28:693–703

    Google Scholar 

  • Hirani AN (2003) Discrete exterior calculus. PhD thesis, California Institute of Technology

  • Hodge WVD (1989) The theory and applications of harmonic integrals. CUP Archive

  • Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268(5214):1144–9

    Google Scholar 

  • Im W, Beglov D, Roux B (1998) Continuum solvation model: electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput Phys Commun 111(1–3):59–75

    MATH  Google Scholar 

  • Jiang J, Wang Y, Sušac L, Chan H, Basu R, Zhou ZH, Feigon J (2018) Structure of telomerase with telomeric dna. Cell 173(5):1179–1190

    Google Scholar 

  • Juffer A, van Keulen BE, van der Ploeg A, Berendsen H (1991) The electric potential of a macromolecule in a solvent: a fundamental approach. J Comput Phys 97:144–171

    MATH  Google Scholar 

  • Kuglstatter A, Stihle M, Neumann C, Müller C, Schaefer W, Klein C, Benz J, Research RP, Development E (2017) Structural differences between glycosylated, disulfide-linked heterodimeric knob-into-hole fc fragment and its homodimeric knob-knob and hole-hole side products. Protein Eng Des Sel 30(9):649–656

    Google Scholar 

  • Lanza A, Margheritis E, Mugnaioli E, Cappello V, Garau G, Gemmi M (2019) Nanobeam precession-assisted 3d electron diffraction reveals a new polymorph of hen egg-white lysozyme. IUCrJ 6(2):178–188

    Google Scholar 

  • Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55(3):379–400

    Google Scholar 

  • Levitt M, Sander C, Stern PS (1985) Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol 181(3):423–447

    Google Scholar 

  • Li L, Li C, Zhang Z, Alexov E (2013) On the dielectric constant of proteins: smooth dielectric function for macromolecular modeling and its implementation in delphi. J Chem Theory Comput 9(4):2126–2136

    Google Scholar 

  • Liang J, Subranmaniam S (1997) Computation of molecular electrostatics with boundary element methods. Biophys J 73:1830–1841

    Google Scholar 

  • Lim L-H (2015) Hodge laplacians on graphs. arXiv preprint arXiv:1507.05379

  • Lu B, Cheng X, McCammon JA (2007) new-version-fast-multipole-method accelerated electrostatic calculations in biomolecular systems. J Comput Phys 226(2):1348–1366

    MathSciNet  MATH  Google Scholar 

  • Ma JP (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13:373–380

    Google Scholar 

  • Ming D, Kong Y, Lambert MA, Huang Z, Ma J (2002) How to describe protein motion without amino acid sequence and atomic coordinates. Proc Nat Acad Sci 99(13):8620–8625

    Google Scholar 

  • Mitchell JC (1998) Hodge decomposition and expanding maps on the flat tori. PhD thesis, University of California, Berkeley

  • Muench SP, Huss M, Song CF, Phillips C, Wieczorek H, Trinick J, Harrison MA (2009) Cryo-electron microscopy of the vacuolar atpase motor reveals its mechanical and regulatory complexity. J Mol Biol 386(4):989–999

    Google Scholar 

  • Murakami K, Stewart M, Nozawa K, Tomii K, Kudou N, Igarashi N, Shirakihara Y, Wakatsuki S, Yasunaga T, Wakabayashi T (2008) Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin-t. Proc Nat Acad Sci 105(20):7200–7205

    Google Scholar 

  • Natarajan V, Koehl P, Wang Y, Hamann B (2008) Visual analysis of biomolecular surfaces. In: Linsen L, Hagen H, Hamann B (eds) Mathematical methods for visualization in medicine and life science. Springer, Berlin, pp 237–256

    Google Scholar 

  • Nguyen DD, Wang B, Wei GW (2017) Accurate, robust and reliable calculations of Poisson–Boltzmann binding energies. J Comput Chem 38:941–948

    Google Scholar 

  • Nguyen DD, Xia KL, Wei GW (2016) Generalized flexibility-rigidity index. J Chem Phys 144:234106

    Google Scholar 

  • Nielsen JE, McCammon JA (2003) Calculating pka values in enzyme active sites. Protein Sci 12(9):1894–1901

    Google Scholar 

  • Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T (2013) Cenp-t provides a structural platform for outer kinetochore assembly. EMBO J 32(3):424–436

    Google Scholar 

  • Opron K, Xia KL, Wei GW (2014) Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis. J Chem Phys 140:234105

    Google Scholar 

  • Richards FM (1977) Areas, volumes, packing, and protein structure. Ann Rev Biophys Bioeng 6(1):151–176

    Google Scholar 

  • Sander B, Golas MM, Makarov EM, Brahms H, Kastner B, Lührmann R, Stark H (2006) Organization of core spliceosomal components u5 snrna loop i and u4/u6 di-snrnp within u4/u6. u5 tri-snrnp as revealed by electron cryomicroscopy. Mol Cell 24(2):267–278

    Google Scholar 

  • Sharp KA, Honig B (1990) Electrostatic interactions in macromolecules—theory and applications. Ann Rev Biophys Biophys Chem 19:301–332

    Google Scholar 

  • Singh AK, McGoldrick LL, Twomey EC, Sobolevsky AI (2018) Mechanism of calmodulin inactivation of the calcium-selective trp channel trpv6. Sci Adv 4(8):eaau6088

    Google Scholar 

  • Tama F, Wriggers W, Brooks CL III (2002) Exploring global distortions of biological macromolecules and assemblies from low-resolution structural information and elastic network theory. J Mol Biol 321(2):297–305

    Google Scholar 

  • Tamstorf R, Grinspun E (2013) Discrete bending forces and their jacobians. Graph Models 75(6):362–370

    Google Scholar 

  • Tasumi M, Takenchi H, Ataka S, Dwidedi AM, Krimm S (1982) Normal vibrations of proteins: glucagon. Biopolymers 21:711–714

    Google Scholar 

  • Vorobjev YN, Scheraga HA (1997) A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent. J Comput Chem 18(4):569–583

    Google Scholar 

  • Wagoner JA, Baker NA (2006) Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proc Nat Acad Sci USA 103(22):8331–6

    Google Scholar 

  • Wollenman LC, Vander Ploeg MR, Miller ML, Zhang Y, Bazil JN (2017) The effect of respiration buffer composition on mitochondrial metabolism and function. PLoS ONE 12(11):e0187523

    Google Scholar 

  • Xia K, Wei G-W (2016) A review of geometric, topological and graph theory apparatuses for the modeling and analysis of biomolecular data. arXiv preprint arXiv:1612.01735

  • Xia KL, Feng X, Tong YY, Wei GW (2014) Multiscale geometric modeling of macromolecules i: Cartesian representation. J Comput Phys 275:912–936

    MathSciNet  MATH  Google Scholar 

  • Xia KL, Feng X, Tong YY, Wei GW (2015) Persistent homology for the quantitative prediction of fullerene stability. J Comput Chem 36:408–422

    Google Scholar 

  • Xia KL, Opron K, Wei GW (2013) Multiscale multiphysics and multidomain models—flexibility and rigidity. J Chem Phys 139:194109

    Google Scholar 

  • Xia KL, Wei GW (2014) Persistent homology analysis of protein structure, flexibility and folding. Int J Numer Methods Biomed Eng 30:814–844

    MathSciNet  Google Scholar 

  • Yao Y, Sun J, Huang X, Bowman GR, Singh G, Lesnick M, Guibas LJ, Pande VS, Carlsson G (2009) Topological methods for exploring low-density states in biomolecular folding pathways. J Chem Phys 130(14):04B614

    Google Scholar 

  • Yu SN, Geng WH, Wei GW (2007) Treatment of geometric singularities in implicit solvent models. J Chem Phys 126:244108

    Google Scholar 

  • Yu ZY, Holst M, Cheng Y, McCammon JA (2008) Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. J Mol Graphics Model 26:1370–1380

    Google Scholar 

  • Zhao R, Cang Z, Tong Y, Wei G-W (2018) Protein pocket detection via convex hull surface evolution and associated Reeb graph. Bioinformatics 34(17):i830–i837

    Google Scholar 

  • Zhao R, Desbrun M, Wei G-W, Tong YY (2019) 3D hodge decompositions of edge-and face-based vector fields

  • Zheng Q, Yang S, Wei G-W (2012) Biomolecular surface construction by pde transform. Int J Numer Methods Biomed Eng 28(3):291–316

    MathSciNet  MATH  Google Scholar 

  • Zhou Y, Lu B, Gorfe AA (2010) Continuum electromechanical modeling of protein-membrane interactions. Phys Rev E 82(4):041923

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF Grants DMS-1721024, DMS-1761320, and IIS1900473 and NIH Grant GM126189. GWW was also funded by Bristol-Myers Squibb and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiying Tong or Guo-Wei Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Wang, M., Chen, J. et al. The de Rham–Hodge Analysis and Modeling of Biomolecules. Bull Math Biol 82, 108 (2020). https://doi.org/10.1007/s11538-020-00783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00783-2

Keywords

Navigation