Skip to main content

Advertisement

Log in

Sporothrix globosa melanin inhibits antigenpresentation by macrophages and enhances deep organ dissemination

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Melanin is a Sporothrix virulence factor that can inhibit the innate immune functions of macrophages such as phagocytosis and killing. However, no data on melanin’s influence on antigen presentation by macrophages are available. In this study, we used conidia, yeasts, and melanin ghosts (MGs) from a black Sporothrix globosa strain (MEL+) and its ultraviolet-induced albino mutant (MEL−), to study the influence of melanin on expression of molecules involved in antigen presentation by mouse macrophages (MHC class II, CD80, CD86), as well as on levels of transcription factors regulating their expression (CIITA and promoters I, III, and IV). A murine infection model was used to assess the virulence of both strains and differences in expression of MHC class II and CD80/86 in vivo. MHC class II, CD86 CIITA, and PIV expressions were lower in macrophages infected with MEL+ than in macrophages infected with MEL− conidia, while CD80 expression was similar. No statistical difference in gene expression was observed between macrophages infected by MEL+ and MEL− yeasts. Infection by MGs alone had no clear effect on expression of antigen presentation–associated molecules. Mice infected with MEL+ S. globosa had significantly higher fungal burdens in the lung, liver, spleen, kidney, and testicle compared with mice infected with MEL− S. globosa 21 days post-infection. MHC class II expression changes in the animal study were similar to those observed in the in vitro experiment. Our results indicate that S. globosa melanin can inhibit expression of antigen presentation–associated molecules during both the early and late stages of infection, representing a new mechanism to evade host immunity and to enhance dissemination. Further investigations of melanin’s impact on adaptive immunity will be helpful in understanding this fungal virulence factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13(4):708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chakrabarti A, Bonifaz A, Gutierrez-Galhardo MC, Mochizuki T, Li S (2015) Global epidemiology of sporotrichosis. Med Mycol 53(1):3–14

    Article  CAS  PubMed  Google Scholar 

  3. Almeida-Paes R, Frases S, Fialho Monteiro PC, Gutierrez-Galhardo MC, Zancopé-Oliveira RM, Nosanchuk JD (2009) Growth conditions influence melanization of Brazilian clinical Sporothrix schenckii isolates. Microbes Infect 11(5):554–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Almeida-Paes R, Frases S, Araújo Gde S et al (2012) Biosynthesis and functions of a melanoid pigment produced by species of the Sporothrix complex in the presence of L-tyrosine. Appl Environ Microbiol 78(24):8623–8630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Almeida-Paes R, Brito-Santos F, Oliveira MME, Bailão AM, Borges CL, Araújo GRS, Frases S, Soares CMA, Zancopé-Oliveira RM (2019) Interaction with Pantoea agglomerans modulates growth and Melanization of Sporothrix brasiliensis and Sporothrix schenckii. Mycopathologia 184(3):367–381

    Article  CAS  PubMed  Google Scholar 

  6. Romero-Martinez R, Wheeler M, Guerrero-Plata A, Rico G, Torres-Guerrero H́ (2000) Biosynthesis and functions of melanin in Sporothrix schenckii. Infect Immun 68(6):3696–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mario DA, Santos RC, Denardi LB et al (2016) Interference of melanin in the susceptibility profile of Sporothrix species to amphotericin B. Rev Iberoam Micol 33(1):21–25

    Article  PubMed  Google Scholar 

  8. Almeida-Paes R, Figueiredo-Carvalho MH, Brito-Santos F et al (2016) Melanins protect Sporothrix brasiliensis and Sporothrix schenckii from the antifungal effects of terbinafine. PLoS One 11(3):e0152796

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tamez-Castrellón AK, Romeo O, García-Carnero LC et al (2019) Virulence factors in Sporothrix schenckii, one of the causative agents of sporotrichosis. Curr Protein Pept Sci 21:295–312. https://doi.org/10.2174/1389203720666191007103004

    Article  CAS  Google Scholar 

  10. Carlos IZ, Sassá MF, da Graça Sgarbi DB, Placeres MCP, Maia DCG (2009) Current research on the immune response to experimental sporotrichosis. Mycopathologia 168(1):1–10

    Article  CAS  PubMed  Google Scholar 

  11. Taborda CP, da Silva MB, Nosanchuk JD, Travassos LR (2008) Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi. Mycopathologia 165(4–5):331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Madrid IM, Xavier MO, Mattei AS, Fernandes CG, Guim TN, Santin R, Schuch LFD, Nobre MO, Araújo Meireles MC (2010) Role of melanin in the pathogenesis of cutaneous sporotrichosis. Microbes Infect 12(2):162–165

    Article  CAS  PubMed  Google Scholar 

  13. Yu X, Wan Z, Zhang Z, Li F, Li R, Liu X (2013) Phenotypic and molecular identification of Sporothrix isolates of clinical origin in Northeast China. Mycopathologia 176(1–2):67–74

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu TT, Zhang K, Zhou X (2014) Molecular identification of Sporothrix clinical isolates in China. J Zhejiang Univ Sci B 15(1):100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cruz ILR, Figueiredo-Carvalho MHG, Zancopé-Oliveira RM, Almeida-Paes R (2018) Evaluation of melanin production by Sporothrix luriei. Mem Inst Oswaldo Cruz 113(1):68–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93(3):931–940

    Article  CAS  PubMed  Google Scholar 

  17. Brandt ME, Warnock DW (2003) Epidemiology, clinical manifestations and therapy of infections caused by dematiaceous fungi. J Chemother 15:36–47

    Article  PubMed  Google Scholar 

  18. Chai LY, Netea MG, Sugui J et al (2010) Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 215(11):915–920

    Article  CAS  PubMed  Google Scholar 

  19. Bocca AL, Brito PP, Figueiredo F, Tosta CE (2006) Inhibition of nitric oxide production by macrophages in chromoblastomycosis: a role for Fonsecaea pedrosoi melanin. Mycopathologia. 161(4):195–203

    Article  CAS  PubMed  Google Scholar 

  20. Casadevall A, Rosas AL, Nosanchuk JD (2000) Melanin and virulence in Cryptococcus neoformans. Curr Opin Microbiol 3(4):354–358

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira MME, Almeida-Paes R, Corrêa-Moreira D, Borba CM, Menezes RC, Freitas DFS, do Valle ACF, Schubach AO, Barros MBL, Nosanchuk JD, Gutierrez-Galhardo MC, Zancopé-Oliveira RM (2019) A case of sporotrichosis caused by different Sporothrix brasiliensis strains: mycological, molecular, and virulence analyses. Mem Inst Oswaldo Cruz 114:e190260

    Article  PubMed  PubMed Central  Google Scholar 

  22. Krawczyk M, Reith W (2006) Regulation of MHC class II expression, a unique regulatory system identified by the study of a primary immunodeficiency disease. Tissue Antigens 67(3):183–197

    Article  CAS  PubMed  Google Scholar 

  23. Drozina G, Kohoutek J, Jabrane-Ferrat N, Peterlin BM (2005) Expression of MHC II genes. Curr Top Microbiol Immunol 290:147–170

    CAS  PubMed  Google Scholar 

  24. Wright KL, Ting JP (2006) Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol 27(9):405–412

    Article  CAS  PubMed  Google Scholar 

  25. Zhou L, Cao X, Fang J, Li Y, Fan M (2015) Macrophages polarization is mediated by the combination of PRR ligands and distinct inflammatory cytokines. Int J Clin Exp Pathol 8(9):10964–10974

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Slavik JM, Hutchcroft JE, Bierer BE (1999) CD80 and CD86 are not equivalent in their ability to induce the tyrosine phosphorylation of CD28. J Biol Chem 274(5):3116–3124

    Article  CAS  PubMed  Google Scholar 

  27. Lang TJ, Nguyen P, Peach R, Gause WC, Via CS (2002) In vivo CD86 blockade inhibits CD4+ T cell activation, whereas CD80 blockade potentiates CD8+ T cell activation and CTL effector function. J Immunol 168(8):3786–3792

    Article  CAS  PubMed  Google Scholar 

  28. de Lima FD, Nascimento RC, Ferreira KS, Almeida SR (2012) Antibodies against Sporothrix schenckii enhance TNF-α production and killing by macrophages. Scand J Immunol 75(2):142–146

    Article  Google Scholar 

  29. Moreira JA, Freitas DF, Lamas CC (2015) The impact of sporotrichosis in HIV-infected patients: a systematic review. Infection 43(3):267–276

    Article  PubMed  Google Scholar 

  30. Morris-Jones R (2002) Sporotrichosis. Clin Exp Dermatol 27:427–431

    Article  CAS  PubMed  Google Scholar 

  31. Gutierrez-Galhardo MC, do Valle AC, Fraga BL et al (2010) Disseminated sporotrichosis as a manifestation of immune reconstitution inflammatory syndrome. Mycoses 53(1):78–80

    Article  PubMed  Google Scholar 

  32. Freitas DF, Valle AC, da Silva MB (2014) Sporotrichosis: an emerging neglected opportunistic infection in HIV-infected patients in Rio de Janeiro, Brazil. PLoS Negl Trop Dis 8(8):e3110

    Article  PubMed  PubMed Central  Google Scholar 

  33. Almeida SR (2012) Therapeutic monoclonal antibody for sporotrichosis. Front Microbiol 3:409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oliveira LC, Oliveira MM, Gutierrez-Galhardo MC et al (2015) Phenotypic characteristics associated with virulence of clinical isolates from the Sporothrix complex. Biomed Res Int 2015:212308

    PubMed  PubMed Central  Google Scholar 

  35. Camacho E, León-Navarro I, Rodríguez-Brito S, Mendoza M, Niño-Vega GA (2015) Molecular epidemiology of human sporotrichosis in Venezuela reveals high frequency of Sporothrix globosa. BMC Infect Dis 15:94

    Article  PubMed  PubMed Central  Google Scholar 

  36. de Oliveira MM, Veríssimo C, Sabino R et al (2014) First autochthone case of sporotrichosis by Sporothrix globosa in Portugal. Diagn Microbiol Infect Dis 78(4):388–390

    Article  PubMed  Google Scholar 

  37. Arrillaga-Moncrieff I, Capilla J, Mayayo E, Marimon R, Marine M, Genis J, Cano J, Guarro J (2009) Different virulence levels of the species of Sporothrix in a murine model. Clin Microbiol Infect 15(7):651–655

    Article  CAS  PubMed  Google Scholar 

  38. Fernandes GF, dos Santos PO, Rodrigues AM, Sasaki AA, Burger E, de Camargo ZP (2013) Characterization of virulence profile, protein secretion and immunogenicity of different Sporothrix schenckii sensu stricto isolates compared with S. globosa and S. brasiliensis species. Virulence 4(3):241–249

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (grant numbers 81573060, 81803147, 81703136, and 81171509) as well as the Science & Technology Project Foundation of Jilin Province (grant numbers 20170204060SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Sandro Rogerio de Almeida.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Yao, L., Zhen, Y. et al. Sporothrix globosa melanin inhibits antigenpresentation by macrophages and enhances deep organ dissemination. Braz J Microbiol 52, 19–31 (2021). https://doi.org/10.1007/s42770-020-00345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00345-7

Keywords

Navigation