Skip to main content
Log in

Petrography and geochemistry of Neoproterozoic charnockite–granite association and metasedimentary rocks around Okpella, southwestern Nigeria

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Neoproterozoic charnockite–granite association of Okpella intrudes metasedimentary and migmatite-gneiss complex rocks in the eastern Igarra Schist Belt, southwestern Nigeria. In order to unravel the complex processes involved in the formation and tectonic evolution of the Igarra Schist Belt during the Neoproterozoic, detailed field, petrographic and whole-rock geochemical study of the charnockite–granite association and metasedimentary rocks around Okpella was conducted. Published data on the metasedimentary rocks and Pan-African granitoids in different sectors of the belt were also compiled for detailed interpretations. The charnockites and granites of Okpella show primary magmatic mineralogy and geochemical characteristics. They are silicic (> 63 wt% SiO2), metaluminous to peraluminous, high-K calc-alkaline, ferroan, post-collisional granitoids. The garnet-biotite schist, calc-silicate gneiss and quartzite in the area are low–medium grade metasedimentary rocks. The mineralogy and geochemistry of the charnockites suggest that the charnockitic melt was derived from mafic lower continental crust through partial melting and assimilation-fractionation processes. The granites probably originated from mixed melts derived from lower- to mid-crustal tonalites-trondhjemites-granodiorites and/or subducted metagreywackes and mantle-derived magmas (probably the charnockitic melt and/or its progenitor). The granites and charnockites are coeval and were presumably emplaced during the post-collisional stages of the Pan-African Orogeny. The garnet-biotite schist, calc-silicate gneiss and quartzite represent metamorphosed immature to slightly mature sedimentary rocks, probably greywacke, marl and subarkose, respectively, that were sourced from intermediate–acid rocks which underwent low–moderate chemical weathering with minor contribution from recycled sediment sources and deposited in active continental environments. The Neoproterozoic evolution of the Igarra Schist Belt, therefore, involved deposition and infolding of sediments in active continental margin during the early Pan-African followed by upwelling of basaltic magma from the mantle which underplated and crystallized in the lower continental crust and was subsequently partially melted to generate the charnockitic and granitic melts through mantle-crust interaction during the late Pan-African.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adegbuyi O, Ogunyele AC, Odindu M, Erinfolami TG (2017) Geochemical characteristics and petrogenesis of basement rocks in Idoani area, Ondo State, southwestern Nigeria. Inter J Adv Geosci 5(2):102–108. https://doi.org/10.14419/ijag.v5i2.8377

    Article  Google Scholar 

  • Ademeso OA (2010) Field and petrographic relationships between the charnockitic and associated granitic rock, Akure area, southwestern Nigeria. Inter J Environ Earth Sci 4(11):544–548

    Google Scholar 

  • Adetunji A, Olarewaju VO, Ocan OO, Ganev VY, Macheva L (2016) Geochemistry and U-Pb zircon geochronology of the pegmatites in Ede area, southwestern Nigeria: a newly discovered oldest Pan African rock in southwestern Nigeria. J Afr Earth Sci 15:177–190. https://doi.org/10.1016/j.jafrearsci.2015.12.006

    Article  Google Scholar 

  • Adetunji A, Olarewaju VO, Ocan OO, Macheva L, Ganev VY (2018) Geochemistry and U-Pb zircon geochronology of Iwo quartz potassic syenite, southwestern Nigeria: constraints on petrogenesis, timing of deformation and terrane amalgamation. Precambrian Res 307:125–136. https://doi.org/10.1016/j.precamres.2018.01.015

    Article  Google Scholar 

  • Ajibade AC, Fitches WR (1988) The Nigerian Precambrian and the Pan-African orogeny. In: Oluyide PO, Mbonu WC, Ogezi AEO, Egbuniwe IG, Ajibade AC, Umeji AC (eds) Precambrian geology of Nigeria. Geological Survey of Nigeria, Kaduna, pp 45–54

    Google Scholar 

  • Ajibade AC, Woakes M, Rahaman MA (1987) Proterozoic crustal development in the Pan-African regime of Nigeria. In: Krӧner A (ed) Proterozoic lithospheric evolution 17. https://doi.org/10.1029/GD017p0259

  • Archanjo CJ, Viegas LGF, Hollanda MHBM, Souza LC, Liu D (2013) Timing of the HT/LP transpression in the Neoproterozoic Seridó Belt (Borborema Province, Brazil): constraints from U-Pb (SHRIMP) geochronology and implications for the connections between NE Brazil and West Africa. Gondwana Res 23:701–714. https://doi.org/10.1016/j.gr.2012.05.005

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 96:181–193

    Google Scholar 

  • Bute SI, Yang X, Cao J, Liu L, Deng J, Haruna IV, Girei MB, Abubakar U, Akhtar S (2019) Origin and tectonic implications of ferroan alkali-calcic granitoids from the Hawal Massif, East-Eastern Nigeria terrane: clues from geochemistry and zircon U-Pb-Hf isotopes. Inter Geol Rev 62(2):129–152. https://doi.org/10.1080/00206814.2019.1593250

    Article  Google Scholar 

  • Caby R (1989) Precambrian terrane of Benin-Nigeria and Northeast Brazil and Proterozoic Atlantic fit barks. Geol Soc Amer Spec Paper 230:145–158

    Google Scholar 

  • Caby R, Boessé JM (2001) Pan-African nappe system in Southwest Nigeria: the Ife-Ilesha schist belt. J Afr Earth Sci 33:211–225

    Google Scholar 

  • Castro A (2004) The source of granites: inferences from the Lewisian complex. Scottish J Geol 40(1):49–65

    Google Scholar 

  • Chacko T, Kumar GRR, Meen JK, Rogers JJW (1992) Geochemistry of high-grade supracrustal rocks from the Kerala Khondalite Belt and adjacent massif charnockites. Precambrian Res 55:469–489

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Australian J Earth Sci 48:489–499

    Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    Google Scholar 

  • Cooray PG (1972) In: Dessauvagie TFJ, Whiteman AJ (eds) A note on the charnockites of Akure–Ado-Ekiti area, Western Nigeria. African Geology, Ibadan, pp 45–53

    Google Scholar 

  • Cordani UG, Pimentel MM, Ganade de Araújo CE, Basei MAS, Fuck RA, Girardi VAV (2013) Was there an Ediacaran Clymene Ocean in Central South America? Am J Sci 313:517–539

    Google Scholar 

  • Costa FG, Klein EL, Lafon JM, Milhomem Neto JM, Galarza MA, Rodrigues JB, Naleto JLC, Corrêa Lima RG (2018) Geochemistry and U–Pb–Hf zircon data for plutonic rocks of the Troia Massif, Borborema Province, NE Brazil: evidence for reworking of Archean and juvenile Paleoproterozoic crust during Rhyacian accretionary and collisional tectonics. Precambrian Res 311:167–194. https://doi.org/10.1016/j.precamres.2018.04.008

    Article  Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59(14):2919–2940

    Google Scholar 

  • Dada SS (1998) Crust-forming ages and Proterozoic crustal evolution in Nigeria: a reappraisal of current interpretations. Precambrian Res 87:65–74

    Google Scholar 

  • Dada SS (2006) Proterozoic evolution of Nigeria. In: Oshin O (ed) The basement complex of Nigeria and its mineral resources (a tribute to prof MAO Rahaman). Akin Jinad and Co., Ibadan, pp 29–44

    Google Scholar 

  • Dada SS (2008) Proterozoic evolution of the Nigeria–Borborema Province. In: Pankhurst RJ, Trouw RAJ, Brito Neves BB, De Wit MJ (eds.) West Gondwana: pre-Cenozoic correlations across the South Atlantic region. Geol Soc Lond Spec Publ 294:121–136. https://doi.org/10.1144/SP294.7

    Article  Google Scholar 

  • Dada SS, Lancelot JR, Briqueu L (1989) Age and origin of the annular charnockitic complex at Toro, Northern Nigeria: U-Pb and Rb-Sr evidence. J Afr Earth Sci 9(2):227–234

    Google Scholar 

  • Dada SS, Tubosun IA, Lancelot JR, Lar AU (1993) Late Archaean U-Pb age for the reactivated basement of northeastern Nigeria. J Afr Earth Sci 16(4):405–412

    Google Scholar 

  • Dada SS, Briqueu L, Harms U, Lancelot JR, Matheis G (1995) Charnockitic and monzonitic Pan-African series from northcentral Nigeria: trace-element and Nd, Sr, Pb isotope constraints on their petrogenesis. Chem Geol 124:233–252

    Google Scholar 

  • Danbatta UA (2008) A review of the evolution and tectonic framework of the schist belts of Western Nigeria, West Africa. Afr Geosci Rev 15(2):145–158

    Google Scholar 

  • Ekwueme BN (1987) Structural orientations and Precambrian deformational episodes of Uwet area Oban massif, SE Nigeria. Precambrian Res 34:269–289

    Google Scholar 

  • Ekwueme BN (2003a) Geochemistry of crystalline basement rocks, SW Ugep, Nigeria. Glob J Geol Sci 1(2):1–7

    Google Scholar 

  • Ekwueme BN (2003b) The Precambrian geology and evolution of the southeastern Nigerian Basement Complex. University of Calabar Press

  • Ekwueme BN, Kalsbeek F (2014) U-Pb geochronology of metasedimentary schists in Akwanga area of northcentral Nigeria and its implications for the evolution of the Nigerian Basement Complex. Glob J Geol Sci 12(1):21–30. https://doi.org/10.4314/gjgs.v12i1.3

    Article  Google Scholar 

  • Elueze AA (1988) Geology of the Precambrian Schist Belt in Ilesha area, southwestern Nigeria. In: Oluyide PO, Mbonu WC, Ogezi AEO, Egbuniwe IG, Ajibade AC, Umeji AC (eds) Precambrian geology of Nigeria. Geological Survey of Nigeria, Kaduna, pp 77–82

    Google Scholar 

  • Fagbohun BJ, Omitogun AA, Bamisaiye OA, Ayoola FJ (2020) Remote detection and interpretation of structural style of the Zuru Schist Belt, Northwest Nigeria. Geocarto Inter:1–21. https://doi.org/10.1080/10106049.2020.1753822

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geol 23:921–924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    Article  Google Scholar 

  • Ferré EC, Deleris J, Bouchez JL, Lar AU, Peucat JJ (1996) The Pan-African reactivation of Eburnean and Archaean provinces in Nigeria: structural and isotopic data. J Geol Soc Lond 153:719–728

    Google Scholar 

  • Ferré EC, Caby R, Peucat JJ, Capdevila R, Monie P (1998) Pan-African, post-collisional, ferro-potassic granite and quartz-monzonite plutons of eastern Nigeria. Lithos 45:225–279

    Google Scholar 

  • Ferré EC, Gleizes G, Caby R (2002) Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian Res 114:199–219

    Google Scholar 

  • Fitches WR, Ajibade AC, Egbuniwe IG, Holt RW, Wright JB (1985) Late Proterozoic schist belts and plutonism in NW Nigeria. Geol Soc Lond 142:319–337

    Google Scholar 

  • Frost BR, Frost CD (1987) CO2, melts and granulite metamorphism. Nature 327:503–506

    Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Google Scholar 

  • Garcia MGM, Santos TJS, Amaral WS (2014) Provenance and tectonic setting of Neoproterozoic supracrustal rocks from the Ceará Central Domain, Borborema Province (NE Brazil): constraints from geochemistry and detrital zircon ages. Inter Geol Rev 56(4):481–500. https://doi.org/10.1080/00206814.2013.875489

    Article  Google Scholar 

  • Gillespie MR, Styles MT (1999) Rock classification scheme volume 1: classification of igneous rocks. British Geological Survey Research Report, 2nd edn. British Geological Survey, Keyworth

    Google Scholar 

  • Girei MB, Najime T, Ogunleye PO (2019) Geochemical characteristics and origin of the Neoproterozoic high-K calc-alkaline granitoids in the northern part of Mandara hills, northeastern Nigeria. Acta Geochim 39:337–354. https://doi.org/10.1007/s11631-019-00365-7

    Article  Google Scholar 

  • Goodenough KM, Lusty PAJ, Roberts NMW, Key RM, Garba A (2014) Post-collisional Pan-African granitoids and rare metal pegmatites in western Nigeria: age, petrogenesis, and the ‘pegmatite conundrum’. Lithos 200:22–34. https://doi.org/10.1016/j.lithos.2014.04.006

    Article  Google Scholar 

  • Grant NK (1970) Geochronology of Precambrian basement rocks from Ibadan, southwestern Nigeria. Earth Planet Sci Lett 10:29–38

    Google Scholar 

  • Harlov DE, Van Den Kerkhof A, Johansson L (2012) TheVarberg–Torpa Charnockite–Granite Association, SW Sweden: mineralogy, petrology, and fluid inclusion chemistry. J Petrology 54(1):3–40. https://doi.org/10.1093/petrology/egs060

    Article  Google Scholar 

  • Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Petrol 58:820–829

    Google Scholar 

  • Hewitt DA, Wones DR (1984) Experimental phase relations of the micas. In: Bailey SW (ed.), Micas. Rev Mineral 13:201–297

    Google Scholar 

  • Hubbard FH (1968) The association Charnockite–Older Granite in SW Nigeria. J Mining Geol 3:25–32

    Google Scholar 

  • Hubbard FH (1988) Basic intrusion, charnockite–rapakivi granite plutonism and crustal depletion, S.W. Sweden. Rendiconti Soc Italiana Mineralogia Petrologia 43(2):543–554

    Google Scholar 

  • Hubbard FH, Whitley JE (1978) Rapakivi granite, anorthosite and charnockitic plutonism. Nature 271(2):439–440

    Google Scholar 

  • Hubbard FH, Whitley JE (1979) REE in charnockite and associated rocks, Southwest Sweden. Lithos 12:1–11

    Google Scholar 

  • Ibe CU, Obiora SC (2019) Geochemical characterization of granitoids in Katchuan Irruan area: further evidence for peraluminous and shoshonitic compositions and post-collisional setting of granitic rocks in the Precambrian Basement Complex of Nigeria. Acta Geochim 38:734–752. https://doi.org/10.1007/s11631-019-00318-0

    Article  Google Scholar 

  • Ikoro DO, Okereke CO, Agumanu AE, Isreal HO, Ekeocha NE (2012) Geochemistry of the calc-silicate rocks of Igarra, southwestern Nigeria. Inter J Emerging Trends Eng Dev 2(2):35–46

    Google Scholar 

  • Jimoh OA, Ariffin KS, Hussin HB, Habeeb AA (2016) Characterization and assessment of Okpella metacarbonate deposit in Nigeria. Carbonates Evap 32:513–524. https://doi.org/10.1007/s13146-016-0308-3

    Article  Google Scholar 

  • Kolawole MS, Onimisi M, Olobaniyi SB (2017) Field occurrence and structural characteristics of basement rocks around Kabba-Bunu area in part of Kabba-Lokoja-Igarra Schist Belt, southwestern Nigeria. Global J Pure Appl Sci 23:263–274. https://doi.org/10.4314/gjpas.v23i2.7

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Krӧner A, Ekwueme BN, Pidgeon RT (2001) The oldest rocks in West Africa: SHRIMP zircon age for early Archean migmatitic orthogneiss at Kaduna, northern Nigeria. J Geol 109:399–406

    Google Scholar 

  • Kumar S, Gupta S, Sensarma S, Bhutani R (2020) Proterozoic felsic and mafic magmatism in India: implications for crustal evolution through crust-mantle interactions. Episodes 43(1):203–230

    Google Scholar 

  • Laurent O, Martin H, Moyen JF, Doucelance R (2014) The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 205:208–235

    Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms. Recommendations of the IUGS sub-commission on the systematics of igneous rocks. Cambridge University Press

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J Geophys Res 112:B03211. https://doi.org/10.1029/2005JB004223

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Amer Bull 101:635–643

    Google Scholar 

  • Martignole J (1979) Charnockite genesis and the Proterozoic crust. Precambrian Res 9:303e310

    Google Scholar 

  • McLelland JM, Selleck BW, Hamilton MA, Bickford ME (2010) Late- to post-tectonic setting of some major Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) suite. Canadian Mineral 48(4):729–750. https://doi.org/10.3749/canmin.48.4.729

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Mineral Soc Amer Rev Mineral 21:169–200

    Google Scholar 

  • McLennan SM, Bock B, Hemming SR, Hurowitz JA, Steven ML, McDaniel DK (2003) The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks. In: Lentz DR (ed.) Geochemistry of sediments and sedimentary rocks/evolutionary considerations to mineral deposit-forming environments. Geological Association of Canada, pp 184–190

  • Mendes JC, De Campos CMP (2012) Norite and charnockites from the Venda Nova Pluton, SE Brazil: intensive parameters and some petrogenetic constraints. Geosci Frontiers 3(6):789–800. https://doi.org/10.1016/j.gsf.2012.05.009

    Article  Google Scholar 

  • Nesbitt HW (2003) Petrogenesis of siliciclastic sediments and sedimentary rocks. In: Lentz DR (ed.) Geochemistry of sediments and sedimentary rocks/evolutionary considerations to mineral deposit-forming environments. Geological Association of Canada, pp 39–51

  • Nesbitt HW, Young G (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717. https://doi.org/10.1038/299715a0

    Article  Google Scholar 

  • Obaje NG (2009) Geology and mineral resources of Nigeria. Lecture notes in Earth Sciences 120. Springer-Verlag, Berlin

    Google Scholar 

  • Ocan OO (1990) The petrology of rocks around Idanre area, southwestern Nigeria. Unpublished PhD Thesis, Obafemi Awolowo University, Ile-Ife, Nigeria

  • Odeyemi IB (1981) A review of the orogenic events in the Basement Complex of Nigeria, West Africa. Geol Rundsch 70(3):897–909

    Google Scholar 

  • Odeyemi IB (1988) Lithostratigraphy and structural relationships of the Upper Precambrian metasediments in Igarra area, southwestern Nigeria. In: Oluyide PO, Mbonu WC, Ogezi AEO, Egbuniwe IG, Ajibade AC, Umeji AC (eds) Precambrian geology of Nigeria. Geological Survey of Nigeria, Kaduna, pp 111–125

    Google Scholar 

  • Odeyemi IB, Rahaman MA (1992) Petrology of a composite syenite dyke in Igarra, southwestern Nigeria. J Min Geol 28(2):255–263

    Google Scholar 

  • Ogunyele AC, Obaje SO, Akingboye AS (2018) Lithostructural relationships and petrogenetic affinities of the Basement Complex rocks around Okpella, southwestern Nigeria. Earth Sci Malaysia 2(1):29–36. https://doi.org/10.26480/esmy.01.2018.29.36

    Article  Google Scholar 

  • Ogunyele AC, Oluwajana OA, Ehinola IQ, Ameh BE, Salaudeen TA (2019) Petrochemistry and petrogenesis of the Precambrian Basement Complex rocks around Akungba-Akoko, southwestern Nigeria. Mat Geoenv 66(3):173–184. https://doi.org/10.2478/rmzmag-2019-0036

    Article  Google Scholar 

  • Okeke PO, Meju MA (1985) Chemical evidence for the sedimentary origin of Igarra supracrustal rocks, S.W. Nigeria. J Mining Geol 22:97–104

    Google Scholar 

  • Okeke PO, Akinnagbe T, Anike OL (1988) Major and minor element evaluation of the Igarra granite. J Mining Geol 24:101–106

    Google Scholar 

  • Okonkwo CT, Ganev VY (2012) U-Pb geochronology of the Jebba granitic gneiss and its implications for the Paleoproterozoic evolution of Jebba area, southwestern Nigeria. Int J Geosci 3:1065–1073. https://doi.org/10.4236/ijg.2012.35107

    Article  Google Scholar 

  • Okonkwo CT, Ganev VY (2015) Geochemistry and geochronology of orthogneisses in Bode Saadu area, southwestern Nigeria and their implications for the Palaeoproterozoic evolution of the area. J Afr Earth Sci 109:131–142. https://doi.org/10.1016/j.jafrearsci.2015.05.012

    Article  Google Scholar 

  • Okunlola OA, Okoroafor RE (2009) Geochemical and petrogenetic features of schistose rocks of the Okemesi fold belt, Southwestern Nigeria. Mat Geoenv 56(2):148–162

    Google Scholar 

  • Olarewaju VO (1987) Charnockite–granite association in SW Nigeria: rapakivi granite type and charnockitic plutonism in Nigeria? J Afr Earth Sci 6(1):67–77

    Google Scholar 

  • Olarewaju VO (1999) Fluid inclusion studies of coarse-grained charnockitic and the hybrid rocks in Ukpilla area, southwestern Nigeria. J Min Geol 35(1):1–7

    Google Scholar 

  • Olarewaju VO (2006) The charnockitic intrusives of Nigeria. In: Oshin O (ed) The Basement Complex of Nigeria and its mineral resources. Akin Jinad & Co, Ibadan, pp 45–70

    Google Scholar 

  • Olobaniyi SO (2003) Geochemistry of semi-pelitic schist of Isanlu area, Southwestern Nigeria: implication for the geodynamic evolution of the Egbe–Isanlu schist belt. Glob J Geol Sci 1(2):113–127

    Google Scholar 

  • Olobaniyi SB, Annor AE (2003) Petrology and age implication of ultramafic schist in the Isanlu area of the Isanlu-Egbe Schist Belt, southwestern Nigeria. J Min Geol 39:1–9

    Google Scholar 

  • Oluyide PO (1988) Structural trends in the Nigerian basement. In: Oluyide PO, Mbonu WC, Ogezi AEO, Egbuniwe IG, Ajibade AC, Umeji AC (eds) Precambrian geology of Nigeria. Geological Survey of Nigeria, Kaduna, pp 93–102

    Google Scholar 

  • Omitogun AA, Caby R, Debat P (1991) Le métamorphism Pan-African de la partie centrale de la zone mobile du Nigéria. Comptes Rendus de l'Académie de Science, Paris 313(2):1417–1423

    Google Scholar 

  • Oyawale AA, Ocan OO (2020) Migmatization process and the nature of transition from amphibolite to granulite facies metamorphism in Ikare area Southwestern Nigeria. J Geol Mining Res 12(2):45–64

    Google Scholar 

  • Patiño Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magma? In: Castro , Fernandez C, Virgneresse JL (eds) Understanding granites: integrating new and classical techniques. Geol Soc Lond Spec Publ 168:55–75. https://doi.org/10.1144/GSL.SP.1999.168.01.05

    Article  Google Scholar 

  • Patiño Douce AE (2005) Vapor-absent melting of tonalite at 15–32 kbar. J Petrol 46:275–290. https://doi.org/10.1093/petrology/egh071

    Article  Google Scholar 

  • Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Peng P, Qin Z, Sun F, Zhou X, Guo J, Zhai M, Ernst RE (2019) Nature of charnockite and Closepet granite in thr Dharwar Craton: implications for the architecture of the Archean crust. Precambrian Res 334:105478. https://doi.org/10.1016/j.precamres.2019.105478

    Article  Google Scholar 

  • Rahaman MA (1976) Review of the Basement Geology of southwestern Nigeria. In: Kogbe CA (ed) Geology of Nigeria. Elizabethan Publ. Co., Lagos, pp 41–48

    Google Scholar 

  • Rahaman MA (1988) Recent advances in the study of the Basement Complex of Nigeria. In: Oluyide PO, Mbonu WC, Ogezi AEO, Egbuniwe IG, Ajibade AC, Umeji AC (eds) Precambrian geology of Nigeria. Geological Survey of Nigeria, Kaduna, pp 11–43

    Google Scholar 

  • Rahaman MA, Ajayi TR, Oshin IO, Asubiojo FOI (1988) Trace element geochemistry and tectonic setting of Ile-Ife schist belt. In: Oluyide PO, Mbonu WC, Ogezi AEO, Egbuniwe IG, Ajibade AC, Umeji AC (eds) Precambrian geology of Nigeria. Geological Survey of Nigeria, Kaduna, pp 241–256

    Google Scholar 

  • Rahaman MA, Tubosun IA, Lancellot JR (1991) U-Pb geochronology of potassium syenites from southwestern Nigeria and timing of deformation events during the orogeny. J Afr Earth Sci 13(3–4):387–395

    Google Scholar 

  • Rajesh HM (2004) The igneous charnockite – high-K alkali-calcic I-type granite – incipient charnockite association in Trivandrum Block, southern India. Contrib Miner Petrol 147:346–362

    Google Scholar 

  • Rajesh HM (2007) The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: a case study from southern India. Contrib Mineral Petrol 154:591–606. https://doi.org/10.1007/s00410-007-0211-y

    Article  Google Scholar 

  • Rajesh HM (2008) Petrogenesis of two granites from the Nilgiri and Madurai blocks, southwestern India: implications for charnockite–calc-alkaline granite and charnockite–alkali (A-type) granite link in high-grade terrains. Precambrian Res 162:180–197

    Google Scholar 

  • Rajesh HM, Santosh M (2012) Charnockites and charnockites (editorial). Geosci Frontiers 3(6):737–744

    Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geol 21:825–828

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust. Elsevier-Pergamon, Oxford, pp 1–64

    Google Scholar 

  • Santos FH, Amaral WS, Uchôa Filho EC, Martins DT (2017) Detrital zircon U–Pb ages and whole-rock geochemistry of the Neoproterozoic Paulistana and Santa Filomena complexes, Borborema Province, northeastern Brazil: implications for source area composition, provenance, and tectonic setting. Inter Geol Rev 59:1861–1884. https://doi.org/10.1080/00206814.2017.1300074

    Article  Google Scholar 

  • Sekaran MC, Bhutani R, Balakrishnan S (2016) Rb–Sr and Sm–Nd study of granite–charnockite association in the Pudukkottai region and the link between metamorphism and magmatism in the Madurai Block. J Earth Syst Sci 125(3):605–622

    Google Scholar 

  • Shaw DM (1968) A review of K-Rb fractionation trends by covariance analysis. Geochim Cosmochim Acta 32(6):573–601

    Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Miner Petrol 148:635–661

    Google Scholar 

  • Streckeisen AL (1974) How should charnockitic rocks be named? In: Belliere J, Duchesne JC (eds) Geologie des domaines cristallins. Centenary Societe Geologique de Belgique, Liege, pp 349–360

    Google Scholar 

  • Streckeisen AL (1976) To each plutonic rock its proper name. Earth Sci Rev 11:1–12

    Google Scholar 

  • Thomas RJ, Eglington BM, Bowring SA, Retief EA, Walraven F (1993) New isotope data from a Neoproterozoic porphyritic granitoid-charnockite suite from Natal, South Africa. Precambrian Res 62:83e101

    Google Scholar 

  • Tubosun IA, Lancelot JR, Rahaman MA, Ocan OO (1984) U-Pb Pan-African ages of two charnockite-granite association from southwestern Nigeria. Contrib Miner Petrol 88:188–195

    Google Scholar 

  • Turner DC (1983) Upper Proterozoic schist belts in the Nigerian sector of the Pan-African province of West Africa. Precambrian Res 21:55–79

    Google Scholar 

  • Ugwuonah EN, Tsunogae T, Obiora SC (2017) Metamorphic P–T evolution of garnet-staurolite-biotite pelitic schist and amphibolite from Keffi, north-central Nigeria: Geothermobarometry, mineral equilibrium modeling and P-T path. J Afr Earth Sci 129:1–16

    Google Scholar 

  • Watkins JM, Clemens JD, Treloar PJ (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contrib Mineral Petrol 154:91–110

    Google Scholar 

  • Woakes M, Rahaman MA, Ajibade AC (1987) Some metallogenetic features of the Nigerian Basement. J Afr Earth Sci 6(5):655–664

    Google Scholar 

  • Yakymchuk C (2019) On granites. J Geol Soc India 94:9–22. https://doi.org/10.1007/s12594-019-1261-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors profoundly appreciate the insightful comments of Felipe Grandjean da Costa which helped to clarify and strengthen the interpretations in this paper. We also appreciate the editorial guidance and the invaluable suggestions of Roberto Braga. Olatunde Adegbuyi, Felipe Holanda Santos and Oladotun Afolabi Oluwajana are also acknowledged for their comments on the initial drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abimbola Chris Ogunyele.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunyele, A.C., Obaje, S.O., Akingboye, A.S. et al. Petrography and geochemistry of Neoproterozoic charnockite–granite association and metasedimentary rocks around Okpella, southwestern Nigeria. Arab J Geosci 13, 780 (2020). https://doi.org/10.1007/s12517-020-05785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05785-x

Keywords

Navigation