Skip to main content
Log in

Biological, Physical and Chemical Properties of Nanosilver Particles Collected from Soil in Asir, Saudi Arabia

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A study was carried out on soil samples collected from coastal area of Red Sea and from El-Souda Mountains, KSA. Biological, physical and chemical properties of each soil type had been investigated using X-ray fluorescence spectrometer, X-ray diffraction, scanning electron microscopy, UV–Vis-spectrophotometer, conductivity bridge, AgNO3 titration, electronic pH meter, well diffusion and hydrometer methods. It was found that the Red Sea coastal soils contain major components of Ca (39.74%) in (site 1) at 3 meters height, whereas the sandy soil (site 2) has Si (47.61%) at 4 m height. Site 3 at 2640 m height has Si (29.62%), whereas site 4 at 2928 m height has high amount of Fe (62.25%). Except soils of site 2, all other sites are fall into the grains category of a micrometer scale. The pH value of the soil extract was decreased gradually from (7.75 ± 0.08) in site 1 to (6.52 ± 0.09) in site 4. Electrical conductivity was found to be very high in site 1 (9.84 ± 0.03 mS) and less in site 2 (2.35 ± 0.01 mS) and in sites 3 and 4 were very low. Chloride amount was very high in site 1 (2929 ± 1.52 ppm) and in site 2 (692 ± 1.54 ppm) and no traces found in sites 3 and 4. Site 4 had the highest amount of clay 80%. XRD pattern showed there was a remarkable difference in crystalline nature, phase identification and in grain size. Synthesized nanoparticles from all soils showed promising antimicrobial activities against all tested pathogenic microbial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brady, N.; Weil, R.: The Nature and Properties of Soils. Pearson Prentice Hall, New Jersey (2008)

    Google Scholar 

  2. Addis, W.; Abebaw, A.: Analysis of selected physicochemical parameters of soils used for cultivation of garlic (Allium sativum L.). Sci. Technol. Arts Res. J. 3, 29–35 (2015)

    Article  Google Scholar 

  3. Sumithra, S.; Ankalaiah, C.; Rao, D.; Yamuna, R.: A case study on physicochemical characteristics of soil around industrial and agricultural area of Yerraguntla, Kadapa district, AP, India. Int. J. Geo. Earth Environ. Sci. 3, 28–34 (2013)

    Google Scholar 

  4. Aydinalp, C.; Cresser, M.: Distribution of heavy metals in irrigated vertisol profiles in semiarid region of Turkey. Pol. J. Environ. Stud. 18, 539–545 (2009)

    Google Scholar 

  5. Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S.: Nanoparticles in the environment: where do we come from, where do we go to? Environ. Sci. Eur. 30, 1–17 (2018)

    Article  Google Scholar 

  6. Taghavi, S.M.; Momenpour, M.; Azarian, M.; Ahmadian, M.; Souri, F.; Taghavi, S.A.; Sadeghain, M.; Karchani, M.: Effects of nanoparticles on the environment and outdoor workplaces. Electron. Phys. 5, 706 (2013)

    Google Scholar 

  7. Shukla, R.K.; Sharma, V.; Pandey, A.K.; Singh, S.; Sultana, S.; Dhawan, A.: ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. In Vitro 25, 231–241 (2011)

    Article  Google Scholar 

  8. Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M.: Silver nanoparticles as potential antiviral agents. Molecules 16, 8894–8918 (2011)

    Article  Google Scholar 

  9. Rajeshkumar, S.; Malarkodi, C.; Vanaja, M.; Annadurai, G.: Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J. Mol. Struct. 1116, 165–173 (2016)

    Article  Google Scholar 

  10. Gopinath, P.; Gogoi, S.K.; Sanpui, P.; Paul, A.; Chattopadhyay, A.; Ghosh, S.S.: Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf. B Biointerfaces 77, 240–245 (2010)

    Article  Google Scholar 

  11. Pareek, V.; Gupta, R.; Panwar, J.: Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater. Sci. Eng., C 90, 739–749 (2018)

    Article  Google Scholar 

  12. Moustafa, M.; Alamri, S.; Elnouby, M.; Tarek, T.; Abu-Saied, M.; Shati, A.; Mohamed, A.-K.; Alrumman, S.: Hydrothermal preparation of TiO2–Ag nanoparticles and its antimicrobial performance against human pathogenic microbial cells in water. BioCell 42, 93 (2018)

    Article  Google Scholar 

  13. O’Neill, J.: Review on antimicrobial resistance: tackling drug-resistant infections globally—final report and recommendations (Wellcome Trust, UK Government) (2016)

  14. Hover, B.M.; Kim, S.-H.; Katz, M.; Charlop-Powers, Z.; Owen, J.G.; Ternei, M.A.; Maniko, J.; Estrela, A.B.; Molina, H.; Park, S.: Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol. 3, 415–422 (2018)

    Article  Google Scholar 

  15. Tringe, S.G.; Von Mering, C.; Kobayashi, A.; Salamov, A.A.; Chen, K.; Chang, H.W.; Podar, M.; Short, J.M.; Mathur, E.J.; Detter, J.C.: Comparative metagenomics of microbial communities. Science 308, 554–557 (2005)

    Article  Google Scholar 

  16. Reddy, B.V.B.; Kallifidas, D.; Kim, J.H.; Charlop-Powers, Z.; Feng, Z.; Brady, S.F.: Natural product biosynthetic gene diversity in geographically distinct soil microbiomes. Appl. Environ. Microbiol. 78, 3744–3752 (2012)

    Article  Google Scholar 

  17. Piddock, L.J.: Teixobactin, the first of a new class of antibiotics discovered by iChip technology? J. Antimicrob. Chemother. 70, 2679–2680 (2015)

    Article  Google Scholar 

  18. Rondon, M.; August, P.; BettermannA, Brady S.; Grossman, T.; Liles, M.; Loiacono, K.; Lynch, B.; MacNeil, I.A.; Minor, C.; Tiong, C.L.; Gilman, M.; Osburne, M.S.; Clardy, J.; Handelsman, J.; Goodman, R.M.: Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541–2547 (2000)

    Article  Google Scholar 

  19. Crowe, J.D.; Olsson, S.: Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl. Environ. Microbiol. 67, 2088–2094 (2001)

    Article  Google Scholar 

  20. Courtois, S.; Cappellano, C.M.; Ball, M.; Francou, F.-X.; Normand, P.; Helynck, G.; Martinez, A.; Kolvek, S.J.; Hopke, J.; Osburne, M.S.: Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl. Environ. Microbiol. 69, 49–55 (2003)

    Article  Google Scholar 

  21. Richards, L.: Diagnosis and improvement of saline and alkali soils. In: Handbook, vol. 60 (1954)

  22. Estefan, G.; Sommer, R.; Ryan, J.: Methods of soil, plant, and water analysis. In: A Manual for the West Asia and North Africa Region, vol. 3 (2013)

  23. Wufem, B.; Ibrahim, A.; Maina, H.; Gungsat, N.; Barnabas, N.: Quality evaluation and physico-chemical properties of soils around a cement factory in Gombe State, Nigeria. In: International Conference on Advances in Agricultural, Biological and Environmental Sciences (AABES-2014), pp. 15–16 (2014)

  24. Ene, A.; Bosneaga, A.; Georgescu, L.: Determination of heavy metals in soils using XRF technique. Rom. J. Phys. 55, 815–820 (2010)

    Google Scholar 

  25. McComb, J.Q.; Rogers, C.; Han, F.X.; Tchounwou, P.B.: Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer: a comparative study. Water Air Soil Pollut. 225, 2169 (2014)

    Article  Google Scholar 

  26. Ingle, A.; Rai, M.; Gade, A.; Bawaskar, M.: Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J J. Nanopart. Res. 11, 2079 (2009)

    Article  Google Scholar 

  27. Jena, S.; Singh, R.K.; Panigrahi, B.; Suar, M.; Mandal, D.: Photo-bioreduction of Ag + ions towards the generation of multifunctional silver nanoparticles: mechanistic perspective and therapeutic potential. J Photochem Photobiol B Biol 164, 306–313 (2016)

    Article  Google Scholar 

  28. Gairola, S.U.; Soni, P.: Role of soil physical properties in ecological succession of restored mine land: a case study. Int. J. Environ. Sci. 1, 475–480 (2010)

    Google Scholar 

  29. Ai, S.; Liu, B.; Yang, Y.; Ding, J.; Yang, W.; Bai, X.; Naeem, S.; Zhang, Y.: Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors. Ecotoxicol. Environ. Saf. 153, 204–214 (2018)

    Article  Google Scholar 

  30. Baranowski, R.; Rybak, A.; Baranowska, I.: Speciation analysis of elements in soil samples by XRF. Pol. J. Environ. Stud. 11, 473–482 (2002)

    Google Scholar 

  31. Prakash, P.J.; Stenchikov, G.L.; Tao, W.; Yapici, T.; Warsama, B.H.; Engelbrecht, J.: Arabian Red Sea coastal soils as potential mineral dust sources (2016)

  32. Shadfan, H.; Mashhady, A.; Eter, A.; Hussen, A.: Mineral composition of selected soils in Saudi Arabia. Z. Pflanzenernährung Bodenkunde 147, 657–668 (1984)

    Article  Google Scholar 

  33. Aba-Husayn, M.; Dixon, J.; Lee, S.: Mineralogy of Saudi Arabian soils: Southwestern Region 1. Soil Sci. Soc. Am. J. 44, 643–649 (1980)

    Article  Google Scholar 

  34. Marschner, C.; Marschner, H.: Mineral Nutrition of Higher Plants, Academic Press, London, p. 889 (1995)

  35. White, P.J.; Broadley, M.R.: Chloride in soils and its uptake and movement within the plant: a review. Ann. Bot. 88, 967–988 (2001)

    Article  Google Scholar 

  36. Hewitt, E.J.; Smith, T.A.: Plant Mineral Nutrition, English Universities Press Ltd. (1974)

  37. Xu, G.; Magen, H.; Tarchitzky, J.; Kafkafi, U.: Advances in chloride nutrition of plants. In: Advances in Agronomy, vol. 68, Elsevier, pp. 97–150 (1999)

  38. Öberg, G.: Chloride and organic chlorine in soil. Acta Hydrochim. Hydrobiol. 26, 137–144 (1998)

    Article  Google Scholar 

  39. Richards, L.A.: Diagnosis and improvement of saline and alkali soils. LWW (1954)

  40. Signore, A.; Serio, F.; Santamaria, P.: A targeted management of the nutrient solution in a soilless tomato crop according to plant needs. Front. Plant Sci. 7, 391 (2016)

    Article  Google Scholar 

  41. Samarakoon, U.; Weerasinghe, P.; Weerakkody, W.: Effect of electrical conductivity (EC) of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture (2006)

  42. Aref, I.; El-Juhany, L.: Planting Juniperus procera trees in the natural forests of Saudi Arabia: the first trial. In: The Second Conference of Development and Environment in Arab World, Assiut University, Egypt, pp. 23–25 (2004)

  43. Aref, I.; El-Juhany, L.: Natural and planted forests in Saudi Arabia; their past present and future. Arab. Gulf J. Sci. Res. 18, 64–72 (2000)

    Google Scholar 

  44. El-Juhany, L.: The magnitude of dieback on Juniperus procera trees in the natural forests in the southwestern region of Saudi Arabia. Biosci. Biotech. Res. 12, 219–230 (2015)

    Article  Google Scholar 

  45. Nadolny, C.: Dieback and what to do about it. Department of Land and Water Conservation: Sydney (2002)

  46. El-Juhany, L.I.; Aref, I.M.; Al-Ghamdi, M.A.: The possibility of ameliorating the regeneration of juniper trees in the natural forests of Saudi Arabia. Res. J. Agric. Biol. Sci. 4, 126–133 (2008)

    Google Scholar 

  47. Barth, H.; Horst, S.: The die-back phenomenon of Juniperus procera at the Al-Soudah family park. In: Results of the Field Trip to Al-Soudah Family Park, vol. 23 (2000)

  48. Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J.: Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. PLoS ONE 13, 0202090 (2018)

    Google Scholar 

  49. Brady, N.C.; Weil, R.R.; Weil, R.R.: The Nature and Properties of Soils. Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  50. Halvin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L.: Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 7th edn. Pearson Prentice Hall, Upper Saddle River (2005)

  51. Mock, J.; Barbic, M.; Smith, D.; Schultz, D.; Schultz, S.: Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755–6759 (2002)

    Article  Google Scholar 

  52. Noginov, M.; Zhu, G.; Bahoura, M.; Adegoke, J.; Small, C.; Ritzo, B.; Drachev, V.; Shalaev, V.: The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl. Phys. B 86, 455–460 (2007)

    Article  Google Scholar 

  53. Hayhurst, E.J.; Kailas, L.; Hobbs, J.K.; Foster, S.J.: Cell wall peptidoglycan architecture in Bacillus subtilis. Proc. Natl. Acad. Sci. 105, 14603–14608 (2008)

    Article  Google Scholar 

  54. Conibear, T.C.; Collins, S.L.; Webb, J.S.: Role of mutation in Pseudomonas aeruginosa biofilm development. PLoS ONE 4, 6289 (2009)

    Article  Google Scholar 

  55. Mai-Prochnow, A.; Clauson, M.; Hong, J.; Murphy, A.B.: Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 6, 38610 (2016)

    Article  Google Scholar 

  56. Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J.: Metal oxide nanoparticles as bactericidal agents. Langmuir 18, 6679–6686 (2002)

    Article  Google Scholar 

  57. Pal, S.; Tak, Y.K.; Song, J.M.: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding (R.G.P.1/134/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Moustafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, M., Alamri, S., Al-Emam, A. et al. Biological, Physical and Chemical Properties of Nanosilver Particles Collected from Soil in Asir, Saudi Arabia. Arab J Sci Eng 46, 129–140 (2021). https://doi.org/10.1007/s13369-020-04833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04833-8

Keywords

Navigation