Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 7, 2020

Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting

  • Yaling Tian , Kai Liang and Yali Ji EMAIL logo

Abstract

The citrate-based thermoset elastomer is a promising candidate for bone scaffold material, but the harsh curing condition made it difficult to fabricate porous structure. Recently, poly (1, 8-octanediol-co-Pluronic F127 citrate) (POFC) porous scaffold was creatively fabricated by chitin nanofibrils (ChiNFs) supported emulsion-freeze-casting. Thanks to the supporting role of ChiNFs, the lamellar pore structure formed by directional freeze-drying was maintained during the subsequent thermocuring. Herein, bioactive glass (BG) was introduced into the POFC porous scaffolds to improve bioactivity. It was found the complete replacement of ChiNF particles with BG particles could not form a stable porous structure; however, existing at least 15 wt% ChiNF could ensure the formation of lamellar pore, and the interlamellar distance increased with BG ratios. Thus, the BG granules did not contribute to the formation of pore structure like ChiNFs, however, they surely endowed the scaffolds with enhanced mechanical properties, improved osteogenesis bioactivity, better cytocompatibility as well as quick degradation rate. Reasonably adjusting BG ratios could balance the requirements of porous structure and bioactivity.


Corresponding author: Yali Ji, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China, E-mail:

Award Identifier / Grant number: 51303024

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the program from the National Natural Science Foundation of China (grant no. 51303024).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Tang, D., Tare, R. S., Yang, L. Y., Williams, D. F., Ou, K. L., Oreffo, R. O., 2016. Biomaterials83, 363–382. http://doi.org/10.1016/j.biomaterials.2016.01.024.10.1016/j.biomaterials.2016.01.024Search in Google Scholar PubMed

2. Eglin, D., Mortisen, D., Alini, M., 2009. Soft. Matter5, 938–947. http://doi.org/10.1039/b803718n.10.1039/b803718nSearch in Google Scholar

3. Puppi, D., Chiellini, F., Piras, A. M., Chiellini, E., 2010. Prog. Polym. Sci.35, 403–440. http://doi.org/10.1016/j.progpolymsci.2010.01.006.10.1016/j.progpolymsci.2010.01.006Search in Google Scholar

4. Hu, Y. Y., Tirrell, D. A., 2010. PNAS107, 22425–22429. http://doi.org/10.1073/pnas.1009219107.10.1073/pnas.1009219107Search in Google Scholar PubMed PubMed Central

5. Qiu, H., Yang, J., Kodali, P., Koh, J., Ameer, G. A., 2006. Biomaterials27, 5845–5854. http://doi.org/10.1016/j.biomaterials.2006.07.042.10.1016/j.biomaterials.2006.07.042Search in Google Scholar PubMed

6. Tang, J., Guo, J., Zhen, L., Yang, C., Xie, D., Chen, J., Li, S., Li, S., Kim, G. B., Bai, X., et al., 2015. J. Mater. Chem. B3, 5569–5576. http://doi.org/10.1039/c5tb00607d.10.1039/C5TB00607DSearch in Google Scholar PubMed PubMed Central

7. Chung, E. J., Qiu, H., Kodali, P., Yang, S., Sprague, S. M., Hwong, J., 2011. J. Biomed. Mater. Res. A96, 29–37. http://doi.org/10.1002/jbm.a.32953.10.1002/jbm.a.32953Search in Google Scholar PubMed PubMed Central

8. Chung, E. J., Kodali, P., Laskin, W., Koh, J., 2011. J. Mater. Sci. Mater. M.22, 2131–2138. http://doi.org/10.1007/s10856-011-4393-5.10.1007/s10856-011-4393-5Search in Google Scholar PubMed

9. Jeong, C. G., Zhang, H., Hollister, S. J., 2011. Acta Biomater7, 505–514. http://doi.org/10.1016/j.actbio.2010.08.027.10.1016/j.actbio.2010.08.027Search in Google Scholar PubMed

10. Gyawali, D., Nair, P., Kim, H. K., Yang, J., 2013. Biomater. Sci.1, 52–64. http://doi.org/10.1039/c2bm00026a.10.1039/C2BM00026ASearch in Google Scholar PubMed PubMed Central

11. Baler, K., Ball, J., Cankova, Z., Hoshi, R., Ameer, G. A., 2014. J. Biomater. Sci.2, 1355–1366. http://doi.org/10.1039/c4bm00133h.10.1039/C4BM00133HSearch in Google Scholar

12. Tran, R. T., Wang, L., Zhang, C., Huang, M., Tang, W., Zhang, C., 2014. J. Biomed. Mater. Res.102A, 2521–2532. http://doi.org/10.1002/jbm.a.34928.10.1002/jbm.a.34928Search in Google Scholar PubMed PubMed Central

13. Du, Y., Yu, M., Ge, J., Ma, P. X., Chen, X., Lei, B., 2015. Adv. Func. Mater.25, 5016–5029. http://doi.org/10.1002/adfm.201501712.10.1002/adfm.201501712Search in Google Scholar

14. Du, Y., Yu, M., Chen, X., Ma, P. X., Lei, B., 2016. ACS Appl. Mater. Inter.8, 3079–3091. http://doi.org/10.1021/acsami.5b10378.10.1021/acsami.5b10378Search in Google Scholar PubMed

15. Sun, D., Chen, Y., Tran, R. T., Xu, S., Xie, D., Jia, C., 2014. Scientific. Reports4, 6912. http://doi.org/10.1038/srep06912.10.1038/srep06912Search in Google Scholar PubMed PubMed Central

16. Kang, Y., Yang, J., Khan, S., Anissian, L., Ameer, G. A., 2006. J. Biomed. Mater. Res.77A, 331–339. http://doi.org/10.1002/jbm.a.30607.10.1002/jbm.a.30607Search in Google Scholar PubMed

17. Akbarzadeh, R., Yousefi, A. M., 2014. J. Biomed. Mater. Res.102B, 1304–1315. http://doi.org/10.1002/jbm.b.33101.10.1002/jbm.b.33101Search in Google Scholar PubMed

18. Oh, S. H., Park, S. C., Kim, H. K., Koh, Y. J., Lee, J. H., Lee, M. C., 2011. J. Biomater. Sci. Polym. Ed.22, 225–237. http://doi.org/10.1163/092050609X12597621891620.10.1163/092050609X12597621891620Search in Google Scholar PubMed

19. Jiang, T., Carbone, E. J., Lo, W. H., Laurencin, C. T., 2015. Prog. Polym. Sci.46, 1–24. http://doi.org/10.1016/j.progpolymsci.2014.12.001.10.1016/j.progpolymsci.2014.12.001Search in Google Scholar

20. Gutiérrez, M. C., García-Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., Ferrer, M. L., del Monte, F., 2007. Adv. Funct. Mater.17, 3505–3513. http://doi.org/10.1002/adfm.200700093.10.1002/adfm.200700093Search in Google Scholar

21. Wang, X., Liang, K., Tian, Y., Ji, Y., 2016. Carbohyd. Polym.157, 620–628. http://doi.org/10.1016/j.carbpol.2016.10.034.10.1016/j.carbpol.2016.10.034Search in Google Scholar PubMed

22. Zeng, J., He, Y., Li, S., Wang, Y., 2012. Biomacromolecules13, 1–11. http://doi.org/10.1021/bm201564a.10.1021/bm201564aSearch in Google Scholar PubMed

23. Ma, L., Liu, M., Peng, Q., Liu, Y., Luo, B., Zhou, C., 2016. J. Polym. Res.23, 1–11. http://doi.org/10.1007/s10965-016-1025-2.10.1007/s10965-015-0892-2Search in Google Scholar

24. Zhu, L., Liang, K., Ji, Y., 2015. J. Mech. Behav. Biomed.44, 35–42. http://doi.org/10.1016/j.jmbbm.2014.12.019.10.1016/j.jmbbm.2014.12.019Search in Google Scholar PubMed

25. Hariraksapitak, P., Supaphol Pitt, P., 2010. J. Appl. Polym. Sci.117, 3406–3418. http://doi.org/10.1002/app.32095.10.1002/app.32095Search in Google Scholar

26. Tian, Y., Liang, K., Wang, X., Ji, Y., 2017. ACS Sustain. Chem. Eng.5, 3305–3313. http://doi.org/10.1021/acssuschemeng.6b03146.10.1021/acssuschemeng.6b03146Search in Google Scholar

27. Aksay, I. A., Weiner, S., 1998. Curr. Opin. Solid. St. M.3, 219–220. http://doi.org/10.1016/S1359-0286(98)80093-4.10.1016/S1359-0286(98)80093-4Search in Google Scholar

28. Day, R. M., Boccaccini, A. R., Shurey, S., Roether, J. A., Forbes, A., Hench, L. L., 2004. Biomaterials25, 5857–5866. http://doi.org/10.1016/j.biomaterials.2004.01.043.10.1016/j.biomaterials.2004.01.043Search in Google Scholar PubMed

29. Schepers, E., de Clercq, M., Ducheyne, P., Kempeneers, R., 1991. J. Oral Rehabil.18, 439–452. http://doi.org/10.1111/j.1365-2842.1991.tb01689.x.10.1111/j.1365-2842.1991.tb01689.xSearch in Google Scholar PubMed

30. Gatti, A. M., Valdrè, G., Andersson, O. H., 1994. Biomaterials15, 208–212. http://doi.org/10.1016/0142-9612(94)90069-8.10.1016/0142-9612(94)90069-8Search in Google Scholar PubMed

31. Roether, J. A., Gough, J. E., Boccaccini, A. R., Hench, L. L., Maquet, V., Jérôme, R., 2002. J. Mater. Sci.-Mater. M.13, 1207–1214. http://doi.org/10.1023/A:1021166726914.10.1023/A:1021166726914Search in Google Scholar PubMed

32. Maji, K., Dasgupta, S., Pramanik, K., Bissoyi, A., 2016. Int. J. Biomater.2016, 1–14. http://doi.org/10.1155/2016/9825659.10.1155/2016/9825659Search in Google Scholar PubMed PubMed Central

33. Verrier, S., Blaker, J. J., Maquet, V., Hench, L. L., Boccaccini, A. R., 2004. Biomaterials25, 3013–3021. http://doi.org/10.1016/j.biomaterials.2003.09.081.10.1016/j.biomaterials.2003.09.081Search in Google Scholar PubMed

34. Ji, Y., Wolfe, P. S., Rodriguez, I. A., Bowlin, G. L., 2012. Carbohyd. Polym.87, 2313–2319. http://doi.org/10.1016/j.carbpol.2011.10.066.10.1016/j.carbpol.2011.10.066Search in Google Scholar

35. Perrin, E., Bizot, H., Cathala, B., Capron, I., 2014. Biomacromolecules15, 3766–3771. http://doi.org/10.1021/bm5010417.10.1021/bm5010417Search in Google Scholar PubMed

36. Ji, L., Wang, W., Jin, D., Zhou, S., Song, X., 2015. Mat. Sci. Eng. C-Mater.46, 1–9. http://doi.org/10.1016/j.msec.2014.09.041.10.1016/j.msec.2014.09.041Search in Google Scholar PubMed

37. Gutiérrez, M. C., García-Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., Ferrer, M. L., del Monte, F., 2007. Adv. Funct. Mater.17, 3505–3513. http://doi.org/10.1002/adfm.200700093.10.1002/adfm.200700093Search in Google Scholar

38. Lee, J., Deng, Y., 2011. Soft Matter7, 6034–6040. http://doi.org/10.1039/c1sm05388d.10.1039/c1sm05388dSearch in Google Scholar

39. Yu, X., Xia, Z., Wang, L., Peng, F., Jiang, X., Huang, J., 2012. J. Mater. Chem.22, 9721–9730. http://doi.org/10.1039/c2jm30332a.10.1039/c2jm30332aSearch in Google Scholar

40. Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., Chan, K. J. W., Förster, S., Cranston, E. D., Hoare, T., et al., 2016. Chem. Mater.28, 3406–3415. http://doi.org/10.1021/acs.chemmater.6b00792.10.1021/acs.chemmater.6b00792Search in Google Scholar

41. Tang, D., Tare, R. S., Yang, L., Williams, D. F., Ou, K., Oreffo, R. O. C., 2016. Biomaterials83, 363–382. http://doi.org/10.1016/j.biomaterials.2016.01.024.10.1016/j.biomaterials.2016.01.024Search in Google Scholar PubMed

42. Burger, E. H., Klein-Nulend, J., Veldhuijzen, J. P., 1992. J. Bone Miner. Res.7, S397–S401. http://doi.org/10.1002/jbmr.5650071406.10.1002/jbmr.5650071406Search in Google Scholar PubMed

43. Eglin, D., Mortisen, D., Alini, M., 2009. Soft Matter5, 938–947. http://doi.org/10.1039/b803718n.10.1039/b803718nSearch in Google Scholar

Received: 2019-08-01
Accepted: 2020-04-16
Published Online: 2020-08-07
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2019-0239/html
Scroll to top button