Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 6, 2020

Hydrodynamics of a modified up-flow anaerobic sludge blanket reactor treating organic fraction of municipal solids waste

  • José Vian , Sergio E. Vigueras-Carmona , Alejandra Velasco-Perez , Kelvyn B. Sánchez-Sánchez and Hector Puebla EMAIL logo

Abstract

The hydrodynamic of modified up-flow anaerobic sludge blanket (UASB) treating organic fraction of municipal solids wastes (OFMSW) was investigated using tracer test experiments and residence time distribution (RTD) based models. The modified UASB digester employing the up-flow reactor concept was composed of the sludge bed, localized at the bottom of the reactor, a buffer zone above the sludge bed, a section with the OFMSW, and an upper section with a solid–liquid–gas separator. The solid-state section with the OFMSW allows the separation of hydrolytic and methanogenic phases, reducing the acidification of the reactor. The hydraulic flow transports the faster biodegradable fraction from the packing section to the sludge bed, favoring the methane productivity. Residence time distribution curves were analyzed by three tracer test models (axial dispersion model ADM, tanks in series model TIS and a multiple parameter model MPM). The MPM was successfully fitted to the experimental data.


Corresponding author: Hector Puebla, Posgrado en Ingeniería de Procesos, Universidad Autónoma Metropolitana-Azcapotzalco, Ciudad de México, Mexico, E-mail:

Acknowledgments

José Guadalupe Vian Perez acknowledges the financial support of the Universidad Autónoma Metropolitana via a Ph.D. grant.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Universidad Autónoma Metropolitana.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

References

Anderson, G. K., C. M. M. Campos, C. A. L. Chernicharo, and L. C. Smith. 1991. “Evaluation of the Inhibitory Effects of Lithium when Used as a Tracer for Anaerobic Digesters.” Water Research 25 (7): 755–60, https://doi.org/10.1016/0043-1354(91)90154-I.Search in Google Scholar

André, L., M. Durante, A. Pauss, O. Lespinard, T. Ribeiro, and E. Lamy. 2015. “Quantifying Physical Structure Changes and Non-uniform Water Flow in Cattle Manure during Dry Anaerobic Digestion Process at Lab Scale: Implication for Biogas Production.” Bioresource Technology 192: 660–9, https://doi.org/10.1016/j.biortech.2015.06.022.Search in Google Scholar PubMed

APHA. 1998. Standard Methods for the Examination of Water and Wastewater Analysis. American Public Health Association, Washington, DC.Search in Google Scholar

Batstone, D. J., J. L. A. Hernandez, and J. E. Schmidt. 2005. “Hydraulics of Laboratory and Full-Scale Upflow Anaerobic Sludge Blanket (UASB) Reactors.” Biotechnology and Bioengineering 91 (3): 387–91, https://doi.org/10.1002/bit.20483.Search in Google Scholar PubMed

Benbelkacem, H., D. Garcia-Bernet, J. Bollon, D. Loisel, R. Bayard, J. P. Steyer, R. Gourdon, P. Buffière, and R. Escudié. 2013. “Liquid Mixing and Solid Segregation in High-Solid Anaerobic Digesters.” Bioresource Technology 147: 387–94, https://doi.org/10.1016/j.biortech.2013.08.027.Search in Google Scholar PubMed

Bolle, W. L., J. Van Breugel, G. C. Van Eybergen, N. W. F. Kossen, and W. Van Gils. 1986a. “An Integral Dynamic Model for the UASB Reactor.” Biotechnology and Bioengineering 28 (11): 1621–1636, https://doi.org/10.1002/bit.260281106.Search in Google Scholar PubMed

Bolle, W. L., J. Van Breugel, G. C. Van Eybergen, N. W. F. Kossen, and R. J. Zoetemeyer. 1986b. “Modeling the Liquid Flow in Up-Flow Anaerobic Sludge Blanket Reactors.” Biotechnology and Bioengineering 28 (11): 1615–20, https://doi.org/10.1002/bit.260281105.Search in Google Scholar PubMed

Bouallagui, H., H. Lahdheb, E. Ben Romdan, B. Rachdi, and M. Hamdi. 2009. “Improvement of Fruit and Vegetable Waste Anaerobic Digestion Performance and Stability with Co-substrates Addition.” Journal of Environmental Management 90 (5): 1844–49, https://doi.org/10.1016/j.jenvman.2008.12.002.Search in Google Scholar PubMed

Bouallagui, H., Y. Touhami, R. Ben Cheikh, and M. Hamdi. 2005. “Bioreactor Performance in Anaerobic Digestion of Fruit and Vegetable Wastes.” Process Biochemistry 40 (3–4): 989–95, https://doi.org/10.1016/j.procbio.2004.03.007.Search in Google Scholar

Chen, X. G, P. Zheng, Y. J Guo, Q. Mahmood, C. J Tang, and S. Ding. 2010. “Flow Patterns of Super-high-rate Anaerobic Bioreactor.” Bioresource Technology 101 (20): 7731–35, https://doi.org/10.1016/j.biortech.2010.04.090.Search in Google Scholar PubMed

Chen, Y., J. He, Y. Mu, Y. C. Huo, Z. Zhang, T. A. Kotsopoulos, and R. J. Zeng. 2015. “Mathematical Modeling of Upflow Anaerobic Sludge Blanket (UASB) Reactors: Simultaneous Accounting for Hydrodynamics and Bio-Dynamics.” Chemical Engineering Science 137: 677–84, https://doi.org/10.1016/j.ces.2015.07.016.Search in Google Scholar

Costello, D. J., P. F. Greenfield, and P. L. Lee. 1991a. “Dynamic Modelling of a Single-Stage High-Rate Anaerobic Reactor-I. Model Derivation.” Water Research 25 (7): 847–58, https://doi.org/10.1016/0043-1354(91)90166-N.Search in Google Scholar

Costello, D. J., P. F. Greenfield, and P. L. Lee. 1991b. “Dynamic Modelling of a Single-Stage High-Rate Anaerobic Reactor-II. Model Verification.” Water Research 25 (7): 859–71, https://doi.org/10.1016/0043-1354(91)90167-O.Search in Google Scholar

Dapelo, D., and J. Bridgeman. 2018. “Assessment of Mixing Quality in Full-Scale, Biogas-Mixed Anaerobic Digestion Using CFD.” Bioresource Technology 265: 480–9, https://doi.org/10.1016/j.biortech.2018.06.036.Search in Google Scholar PubMed

Eaton, A. D., L. S. Clesceri, and A. E. Greenberg. 1998. Standard Methods for the Examination of Water and Wastewater, 19th ed. Washington, DC: American Public Health Association.Search in Google Scholar

Escudié, R., T. Conte, J. P. Steyer, and J. P. Delgenès. 2005. “Hydrodynamic and Biokinetic Models of an Anaerobic Fixed-Bed Reactor.” Process Biochemistry 40 (7): 2311–23, https://doi.org/10.1016/j.procbio.2004.09.004.Search in Google Scholar

Fernández-Güelfo, L. A., C. Álvarez-Gallego, D. Sales, and L. I. Romero García. 2012. “Dry-thermophilic Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: Methane Production Modeling.” Waste Management 32 (3): 382–8, https://doi.org/10.1016/j.wasman.2011.11.002.Search in Google Scholar PubMed

Fernández, L. C. 2006. Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Mexico: Instituto Mexicano del Petroleo, Secretaría de Medio Ambiente y Recursos Naturales (In spanish).Search in Google Scholar

Field, J., R. Sierra, and G. Lettinga. 1995. Effect Wastewater Characteristics and Environmental Factors. Curso Internacional de Tratamiento Anaerobio de Aguas Residuales. Universidad de Wageningen, Holanda.Search in Google Scholar

Ganesh, R., M. Torrijos, P. Sousbie, A. Lugardon, J. P. Steyer, and J. P. Delgenes. 2014. “Single-phase and Two-phase Anaerobic Digestion of Fruit and Vegetable Waste: Comparison of Start-Up, Reactor Stability and Process Performance.” Waste Management 34 (5): 875–85, https://doi.org/10.1016/j.wasman.2014.02.023.Search in Google Scholar PubMed

Grimberg, S. J., D. Hilderbrandt, M. Kinnunen, and S. Rogers. 2015. “Anaerobic Digestion of Food Waste through the Operation of a Mesophilic Two-phase Pilot Scale Digester - Assessment of Variable Loadings on System Performance.” Bioresource Technology 178: 226–9, https://doi.org/10.1016/j.biortech.2014.09.001.Search in Google Scholar PubMed

Heertjes, P. M., L. I. Kujivenhoven, and R. R. Van der Meer. 1982. “Fluid Flow Pattern in Upflow Reactors for Anaerobic Treatment of Beet Sugar Factory Wastewater.” Biotechnology and Bioengineering 24 (2): 443–59 https://doi.org/10.1002/bit.260240214.Search in Google Scholar PubMed

Heertjes, P. M., and R. R. Van der Meer. 1978. “Dynamics of Liquid Flow in an Up-Flow Reactor-Used for Anaerobic Treatment of Wastewater.” Biotechnology and Bioengineering 20 (10): 1577–94, https://doi.org/10.1002/bit.260201007.Search in Google Scholar

Izumi, K., Y. Okishio, N. Nagao, C. Niwa, S. Yamamoto, and T. Toda. 2010. “Effects of Particle Size on Anaerobic Digestion of Food Waste.” International Biodeterioration and Biodegradation 64 (7): 601–8, https://doi.org/10.1016/j.ibiod.2010.06.013.Search in Google Scholar

Ji, J. Y., K. Zheng, Y. J. Xing, and P. Zheng. 2012. “Hydraulic Characteristics and Their Effects on Working Performance of Compartmentalized Anaerobic Reactor.” Bioresource Technology 116: 47–52, https://doi.org/10.1016/j.biortech.2012.04.026.Search in Google Scholar

Kalyuzhnyi, S., V. Fedorovich, P. Lens, L. Hulshoff Pol, and G. Lettinga. 1998. “Mathematical Modelling as a Tool to Study Population Dynamics between Sulfate Reducing and Methanogenic Bacteria.” Biodegradation 9 (3–4): 187–99, https://doi.org/10.1023/A:1008339018423.10.1023/A:1008339018423Search in Google Scholar

Khalekuzzaman, M., M. Hasan, R. Haque, and M. Alamgir. 2018. “Hydrodynamic Performance of a Hybrid Anaerobic Baffled Reactor (HABR): Effects of Number of Chambers, Hydraulic Retention Time, and Influent Temperature.” Water Science and Technology 78 (4): 968–81, https://doi.org/10.2166/wst.2018.379.Search in Google Scholar

Li, S., J. Nan, H. Li, and M. Yao. 2015. “Comparative Analyses of Hydraulic Characteristics Between the Different Structures of Two Anaerobic Baffled Reactors (ABRs).” Ecological Engineering 82: 138–44, https://doi.org/10.1016/j.ecoleng.2015.04.095.Search in Google Scholar

Li, S., J. Nan, and F. Gao. 2016. “Hydraulic Characteristics and Performance Modeling of a Modified Anaerobic Baffled Reactor (MABR).” Chemical Engineering Journal 284: 85–92, https://doi.org/10.1016/j.cej.2015.08.129.Search in Google Scholar

Liotta, F., P. Chatellier, G. Esposito, M. Fabbricino, E. D. Van Hullebusch, P. N. L. Lens, and F. Pirozzi. 2015. “Current Views on Hydrodynamic Models of Nonideal Flow Anaerobic Reactors.” Critical Reviews in Environmental Science and Technology 45 (20): 2175–207, https://doi.org/10.1080/10643389.2015.1010426.Search in Google Scholar

Martin, A. D. 2000. “Interpretation of Residence Time Distribution Data.” Chemical Engineering Science 55 (23): 5907–17, https://doi.org/10.1016/S0009-2509(00)00108-1.Search in Google Scholar

Mata-Alvarez, J. 2002. Biomethanization of Organic Fraction of Municipal Solid Wastes. London, UK: IWA Publishing.Search in Google Scholar

Mata-Alvarez, J., S. Macé, and P. Llabrés. 2000. “Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives.” Bioresource Technology 74 (1): 3–16, https://doi.org/10.1016/S0960-8524(00)00023-7.Search in Google Scholar

Mata-Alvarez, J., P. Llabrés, F. Cecchi, and P. Pavan. 1992. “Anaerobic Digestion of the Barcelona Central Food Market Organic Wastes: Experimental Study.” Bioresource Technology 39 (1): 39–48, https://doi.org/10.1016/0960-8524(92)90054-2.Search in Google Scholar

Méndez-Romero, D. C., A. López-López, R. Vallejo-Rodríguez, and E. León-Becerril. 2011. “Hydrodynamic and Kinetic Assessment of an Anaerobic Fixed-Bed Reactor for Slaughterhouse Wastewater Treatment.” Chemical Engineering and Processing: Process Intensification 50 (3): 273–80, https://doi.org/10.1016/j.cep.2011.02.002.Search in Google Scholar

Mu, S. J., Y. Zeng, P. Wu, S. J. Lou, and B. Tartakovsky. 2008. “Anaerobic Digestion Model No. 1-based Distributed Parameter Model of an Anaerobic Reactor: I. Model Development.” Bioresource Technology 99 (9): 3665–75, https://doi.org/10.1016/j.biortech.2007.07.060.Search in Google Scholar

Narnoli, S. K., and I. Mehrotra. 1997. “Sludge Blanket of UASB Reactor: Mathematical Simulation.” Water Research 31 (4): 715–26, https://doi.org/10.1016/S0043-1354(97)80987-6.Search in Google Scholar

Panigrahi, S., and B. K. Dubey. 2019. “A Critical Review on Operating Parameters and Strategies to Improve the Biogas Yield from Anaerobic Digestion of Organic Fraction of Municipal Solid Waste.” Renewable Energy 143: 779–97, https://doi.org/10.1016/j.renene.2019.05.040.Search in Google Scholar

Peña, M. R., D. D. Mara, and G. P. Avella. 2006. “Dispersion and Treatment Performance Analysis of an UASB Reactor under Different Hydraulic Loading Rates.” Water Research 40 (3): 445–52, https://doi.org/10.1016/j.watres.2005.11.021.Search in Google Scholar

Ren, T. T., Y. Mu, H. Q. Yu, H. Harada, and Y. Y. Li. 2008. “Dispersion Analysis of an Acidogenic UASB Reactor.” Chemical Engineering Journal 142 (2): 182–9, https://doi.org/10.1016/j.cej.2007.11.028.Search in Google Scholar

Rivera, F. F., M. R. Cruz-Díaz, E. P. Rivero, and I. González. 2010. “Analysis and Interpretation of Residence Time Distribution Experimental Curves in FM01-LC Reactor Using Axial Dispersion and Plug Dispersion Exchange Models with Closed-Closed Boundary Conditions.” Electrochimica Acta 56 (1): 361–71, https://doi.org/10.1016/j.electacta.2010.08.069.Search in Google Scholar

Rodríguez, D. C., and G. A. Peñuela. 2017. “Hydrodynamic Performance of an Expanded Granular Sludge Bed Reactor for the Removal of Organic Matter.” Environmental Engineering Science 34 (2): 80–8, https://doi.org/10.1089/ees.2016.0070.Search in Google Scholar

Sarathai, Y., T. Koottatep, and A. Morel. 2010. “Hydraulic Characteristics of an Anaerobic Baffled Reactor as Onsite Wastewater Treatment System.” Journal of Environmental Sciences 22 (9): 1319–26, https://doi.org/10.1016/S1001-0742(09)60257-6.Search in Google Scholar

Singhal, A., J. Gomes, V. V. Praveen, and K. B. Ramachandran. 1998. “Axial Dispersion Model for Upflow Anaerobic Sludge Blanket Reactors.” Biotechnology Progress 14 (4): 645–8, https://doi.org/10.1021/bp980042f.Search in Google Scholar PubMed

Sponza, D. T., and O. N. Aǧdaǧ. 2005. “Effects of Shredding of Wastes on the Treatment of Municipal Solid Wastes (MSWs) in Simulated Anaerobic Recycled Reactors.” Enzyme and Microbial Technology 36 (1): 25–33, https://doi.org/10.1016/j.enzmictec.2004.03.021.Search in Google Scholar

Terashima, M., R. Goel, K. Komatsu, H. Yasui, H. Takahashi, Y. Y. Li, and T. Noike. 2009. “CFD Simulation of Mixing in Anaerobic Digesters.” Bioresource Technology 100 (7): 2228–33, https://doi.org/10.1016/j.biortech.2008.07.069.Search in Google Scholar

Trinidad, P., C. Ponce de León, and F. C. Walsh. 2006. “The Application of Flow Dispersion Models to the FM01-LC Laboratory Filter-Press Reactor.” Electrochimica Acta 52 (2): 604–13, https://doi.org/10.1016/j.electacta.2006.05.040.Search in Google Scholar

Van der Meer, R. R., and P. M. Heertjes. 1983. “Mathematical Description of Anaerobic Treatment of Wastewater in Upflow Reactors.” Biotechnology and Bioengineering 25 (11): 2531–56, https://doi.org/10.1002/bit.260251105.Search in Google Scholar

Vavilin, V. A., B. Fernandez, J. Palatsi, and X. Flotats. 2008. “Hydrolysis Kinetics in Anaerobic Degradation of Particulate Organic Material: An Overview.” Waste Management 28 (6): 939–51, https://doi.org/10.1016/j.wasman.2007.03.028.Search in Google Scholar

Verrier, D., F. Roy, and G. Albagnac. 1987. “Two-phase Methanization of Solid Vegetable Wastes.” Biological Wastes 22 (3): 163–77, https://doi.org/10.1016/0269-7483(87)90022-X.Search in Google Scholar

Wu, M. M., and R. F. Hickey. 1997. “Dynamic Model for UASB Reactor Including Reactor Hydraulics, Reaction, and Diffusion.” Journal of Environmental Engineering 123 (3): 244–52, https://doi.org/10.1061/(ASCE)0733-9372.Search in Google Scholar

Yang, Y., Q. Chen, J. Guo, and Z. Hu. 2015. “Kinetics and Methane Gas Yields of Selected C1 to C5 Organic Acids in Anaerobic Digestion.” Water Research 87 (1): 112–8, https://doi.org/10.1016/j.watres.2015.09.012.Search in Google Scholar PubMed

Xu, F., Y. Li, X. Ge, L. Yang, and Y. Li. 2018. “Anaerobic Digestion of Food Waste – Challenges and Opportunities.” Bioresource Technology 247: 1047–58, https://doi.org/10.1016/j.biortech.2017.09.020.Search in Google Scholar PubMed

Zeng, Y., S. J. Mu, S. J. Lou, B. Tartakovsky, S. R. Guiot, and P. Wu. 2005. “Hydraulic Modeling and Axial Dispersion Analysis of UASB Reactor.” Biochemical Engineering Journal 25 (2): 113–23, https://doi.org/10.1016/j.bej.2005.04.024.Search in Google Scholar

Zeshan, O. P. Karthikeyan, and C. Visvanathan. 2012. “Effect of C/N Ratio and Ammonia-N Accumulation in a Pilot-Scale Thermophilic Dry Anaerobic Digester.” Bioresource Technology 113: 294–302, https://doi.org/10.1016/j.biortech.2012.02.028.Search in Google Scholar PubMed

Zhang, Y., and C. J. Banks. 2013. “Impact of Different Particle Size Distributions on Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste.” Waste Management 33 (2): 297–307, https://doi.org/10.1016/j.wasman.2012.09.024.Search in Google Scholar PubMed

Received: 2020-02-02
Accepted: 2020-06-22
Published Online: 2020-08-06

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2020-0024/html
Scroll to top button