Synlett 2020; 31(16): 1629-1633
DOI: 10.1055/s-0040-1707218
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Cyanation under Mild Conditions: A Case Study to Discover Appropriate Substrates among Halides and Pseudohalides

Merla Arjuna Rajendra
a   Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur-572107, Karnataka, India   Email: sunilk999@gmail.com
,
K. Sunil
a   Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur-572107, Karnataka, India   Email: sunilk999@gmail.com
,
Ayyiliath Meleveetil Sajith
b   School of Chemical Sciences, Kannur University, Payyanur Campus, P.O. Edat-670327 Kannur, Kerala, India
c   Ortin laboratories Pvt. Ltd, Malkapur Village, Choutuppal Mandal, Hyderabad, Telangana-508252, India
,
Muthipeedika Nibin Joy
d   Innovation Center for Chemical and Pharmaceutical Technologies, Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, 620002, Russian Federation
,
Vasiliy A. Bakulev
e   TOS Department, Ural Federal University, 19 Mira Street, Yekaterinburg, 620002, Russian Federation
,
Karickal Raman Haridas
b   School of Chemical Sciences, Kannur University, Payyanur Campus, P.O. Edat-670327 Kannur, Kerala, India
› Author Affiliations
The authors are thankful to Sri Siddhartha Academy of Higher Education and Karnataka Council for Technological Upgradation (KCTU) for rendering all the facilities to carry out the research work. Vasiliy Bakulev is thankful to the Russian Science Foundation (Grant No. 18-13-00161).
Further Information

Publication History

Received: 02 June 2020

Accepted after revision: 03 July 2020

Publication Date:
07 August 2020 (online)


Abstract

A case study has been effectively carried out to identify a suitable substrate among halides and pseudohalides for the palladium-catalyzed cyanation reactions under mild conditions. Among the various substrates considered for evaluation, aryl pentafluorobenzenesulfonates and nonaflates were identified to be the best substrates when compared to corresponding halides and pseudohalides. The substoichiometric use of nontoxic, environmentally benign potassium hexacyanoferrate as a cyanide source and exceptionally milder conditions further highlights the significance of the protocol developed. A wide range of electronically biased and sterically challenging substrates provided the corresponding the nitriles in good to excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Yang C, Williams JM. Org. Lett. 2004; 6: 2837
    • 1b Yeung PY, So CM, Lau CP, Kwong Y. Angew. Chem. Int. Ed. 2010; 49: 8918
    • 1c Tu Y, Zhang Y, Xu S, Zhang Z, Xie X. Synlett 2014; 25: 2938
    • 1d Yeung PY, So CM, Lau CP, Kwong FY. Org. Lett. 2011; 13: 648
    • 1e Hajipour AR, Karami K, Pirisedigh A. Appl. Organomet. Chem. 2010; 24: 454
    • 2a Sandmeyer T. Ber. Chem. Dtsch. Chem. Ges. 1884; 17: 2650
    • 2b Sandmeyer T. Ber. Chem. Dtsch. Chem. Ges. 1885; 18: 1492
    • 2c Rosenmund KW, Struck E. Ber. Chem. Dtsch. Chem. Ges. 1919; 52: 1749
    • 2d von Braun J, Manz G. Justus Liebigs Ann. Chem. 1931; 488: 111
    • 2e Moury DT. Chem. Rev. 1948; 42: 207
    • 2f Ellis G, Romney-Alexander T. Chem. Rev. 1987; 87: 779
    • 3a Stevenson AC. Ind. Eng. Chem. 1949; 41: 1846
    • 3b Denton WI, Bishop RB, Caldwell HP, Chapman HD. Ind. Eng. Chem. 1950; 42: 796
    • 4a Shevlin M. Tetrahedron Lett. 2010; 51: 4833
    • 4b Littke A, Soumeillant M, Kaltenbach RF. III, Cherney RJ, Tarby CM, Kiau S. Org. Lett. 2007; 9: 1711
    • 4c Cheng Y.-N, Duan Z, Li T, Wu Y. Synlett 2007; 543
    • 4d Schareina T, Jackstell R, Schulz T, Zapf A, Cotte A, Gotta M, Beller M. Adv. Synth. Catal. 2009; 351: 643
    • 4e Schareina T, Zapf A, Maegerlein W, Mueller N, Beller M. Tetrahedron Lett. 2007; 48: 1087
    • 5a Erhardt S, Grushin VV, Kilpatrick AH, Macgregor SA, Marshall WJ, Roe DC. J. Am. Chem. Soc. 2008; 130: 4828
    • 5b Marcantonio KM, Frey LF, Liu Y, Chen Y, Strine J, Phenix B, Wallace DJ, Chen C.-Y. Org. Lett. 2004; 6: 3723
    • 6a Schareina T, Zapf A, Beller M. Chem. Commun. 2004; 1388
    • 6b Schareina T, Zapf A, Beller M. J. Organomet. Chem. 2004; 689: 4576
    • 6c Chen G, Weng J, Zheng Z, Zhu X, Cai Y, Cai J, Wan Y. Eur. J. Org. Chem. 2008; 3524
    • 6d Grossman O, Gelman D. Org. Lett. 2006; 8: 1189
    • 6e Senecal TD, Shu W, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 10035
    • 6f Zhang J, Chen X, Hu T, Zhang Y, Xu K, Yu Y, Huang J. Catal. Lett. 2010; 139: 56
    • 6g So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
  • 7 Cohen DT, Buchwald SL. Org. Lett. 2015; 17: 202
    • 8a Karuvalam RP, Haridas KR, Sajith AM, Pakkath R, Savitha B, Padusha MS. A, Bakulev VA, Joy MN. ARKIVOC 2019; (vi): 431
    • 8b Savitha B, Reddy EK, Kumar CS. A, Karuvalam RP, Padusha MS. A, Bakulev VA, Narasimhamurthy KH, Sajith AM, Joy MN. Tetrahedron Lett. 2019; 60: 151332
  • 9 Weissman SA, Zewge D, Chen C. J. Org. Chem. 2005; 70: 1508
  • 10 Typical Experimental Procedure for the Synthesis of 3a To a pre-dried 10 mL screw cap equipped reaction vial, aryl pentafluorobenzenesulfonate (1h, 1 mmol), K4Fe(CN)6·3H2O (2, 0.33 mmol, 0.33 equiv) and Na2CO3 (1 mmol, 1 equiv) were added, dissolved in dry DMF (3 mL), and degassed for 5 min. Pd(PPh3)4 (5 mol%) was then added, and the reaction mixture was heated in a pre-heated metal block at 40 ℃ for 3 h under continuous stirring. After the completion of the reaction, the reaction mixture was filtered through a short column using diethyl ether. The filtrate was distilled under reduced pressure, and the crude mixture was purified by column chromatography to afford the 3a (114 mg, 97%) as colorless liquid. 1H NMR (400 MHz, CDCl3): δ = 2.40 (s, 3 H, CH3), 7.25 (d, J = 8 Hz, 2 H, ArH), 7.51 (d, J = 8 Hz, 2 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 23.7, 111.2, 121.0, 131.7, 133.9, 145.6.
    • 11a Joy MN, Bodke YD, Khader KK. A, Sajith AM. Tetrahedron Lett. 2014; 55: 2355
    • 11b Joy MN, Bodke YD, Khader KK. A, Padusha MS. A, Sajith AM, Muralidharan A. RSC Adv. 2014; 4: 19766
    • 11c Joy MN, Bodke YD, Khader KK. A, Sajith AM, Venkatesh T, Kumar AK. A. J. Fluorine Chem. 2016; 182: 109
    • 11d Hickey S, Nitschke S, Sweetman MJ, Sumby CJ, Brooks DA, Plush SE, Ashton TD. J. Org. Chem. 2020; 85: 7986
    • 11e Joseph JT, Sajith AM, Ningegowda RC, Nagaraj A, Rangappa KS, Shashikanth S. Tetrahedron Lett. 2015; 56: 5106
    • 12a Joseph JT, Sajith AM, Ningegowda RC, Shashikanth S. Adv. Synth. Catal. 2017; 359: 419
    • 12b Raghu N, Savitha B, Sajith AM, Aswathanarayanappa C, Padusha MS. A, Shivananju NS, Priya BS. Aust. J. Chem. 2017; 70: 44