Skip to main content

Advertisement

Log in

High reproducibility of the interferon-gamma release assay T-SPOT.TB in serial testing

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Longitudinal studies regarding the reproducibility of Interferon-gamma release assay (IGRA) T-SPOT.TB for the diagnosis of Mycobacterium tuberculosis (M. tb) infection in serial testing are limited. We retrospectively analysed results of serially tested subjects in a medical laboratory in Germany over a time period of 14 years. From October 2004 to December 2018, a total of 5440 subjects were identified with a second T-SPOT.TB test after a median time interval of 258 days (interquartile range [IQR] 62–665). Consistently negative (n = 4520) or positive results (n = 682) were observed in 5202 (95.6%) subjects, indicating a high degree of concordance in serial testing (κ = 0.83). Test conversions occurred in 101 of 4621 (2.2%) subjects with initially negative tests. Of 819 subjects with initially positive test results, 137 (16.7%) had a test reversion which was associated with low spot numbers of the first test. Of 529 subjects retested within 1 year, only 60 (11.3%) displayed a test reversion. In subjects retested after more than 1 year, 77 of 290 (26.6%) tests reverted. This significantly higher rate of test reversions after more than 1 year was age-dependent and only observed in subjects above the age of 40 years. In the medical laboratory, the T-SPOT.TB test demonstrates a high reproducibility in serial testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author [TM] upon reasonable request.

References

  1. Lalvani A, Pareek M (2010) A 100 year update on diagnosis of tuberculosis infection. Br Med Bull 93:69–84. https://doi.org/10.1093/bmb/ldp039

    Article  PubMed  Google Scholar 

  2. Pai M, Zwerling A, Menzies D (2008) Systematic review: t-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med 149:177–184. https://doi.org/10.7326/0003-4819-149-3-200808050-00241

  3. Getahun H, Matteelli A, Abubakar I, Aziz MA, Baddeley A, Barreira D et al (2015) Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur Respir J 46:1563–1576. https://doi.org/10.1183/13993003.01245-2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. European Centre for Disease Prevention and Control, editor (2011) Use of interferon-gamma release assays in support of TB diagnosis: ad hoc scientific panel opinion. [Luxembourg: Publ. Off.]. https://doi.org/10.2900/38588

  5. Ringshausen FC, Schablon A, Nienhaus A. Interferon-gamma release assays for the tuberculosis serial testing of health care workers: a systematic review. Journal of occupational medicine and toxicology (London, England) 2012 26;7:6. doi: https://doi.org/10.1186/1745-6673-7-6

  6. Tagmouti S, Slater M, Benedetti A, Kik SV, Banaei N, Cattamanchi A, et al. Reproducibility of interferon gamma (IFN-γ) release assays. A systematic review. Ann Am Thorac Soc 2014;11:1267–1276. doi: https://doi.org/10.1513/AnnalsATS.201405-188OC

  7. Banaei N, Gaur RL, Pai M (2016) Interferon gamma release assays for latent tuberculosis: what are the sources of variability? J Clin Microbiol 54:845–850. https://doi.org/10.1128/JCM.02803-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilkinson KA, Kon OM, Newton SM, Meintjes G, Davidson RN, Pasvol G, et al. (2006) Effect of treatment of latent tuberculosis infection on the T cell response to Mycobacterium tuberculosis antigens. J Infect Dis 1(193):354–9. https://doi.org/10.1086/499311

  9. van Zyl-Smit RN, Zwerling A, Dheda K, Pai M (2009) Within-subject variability of interferon-g assay results for tuberculosis and boosting effect of tuberculin skin testing: a systematic review. PLoS One 4:e8517. https://doi.org/10.1371/journal.pone.0008517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E et al (2017) Official American thoracic society/infectious diseases society of America/Centers for disease control and prevention clinical practice guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis 64:111–115. https://doi.org/10.1093/cid/ciw778

    Article  PubMed  PubMed Central  Google Scholar 

  11. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374

    Article  CAS  Google Scholar 

  12. King TC, Upfal M, Gottlieb A, Adamo P, Bernacki E, Kadlecek CP et al (2015) T-SPOT.TB interferon-γ release assay performance in healthcare worker screening at nineteen U.S. hospitals. Am J Respir Crit Care Med 192:367–373. https://doi.org/10.1164/rccm.201501-0199OC

    Article  PubMed  Google Scholar 

  13. Teranishi S, Kobayashi N, Aoki A, Katakura S, Yamamoto M, Koizumi H et al (2019) Reproducibility of the T-SPOT.TB test for screening Mycobacterium tuberculosis infection in Japan. J Infect Chemother. https://doi.org/10.1016/j.jiac.2019.08.006

  14. Dorman SE, Belknap R, Graviss EA, Reves R, Schluger N, Weinfurter P et al (2014) Interferon-γ release assays and tuberculin skin testing for diagnosis of latent tuberculosis infection in healthcare workers in the United States. Am J Respir Crit Care Med 189:77–87. https://doi.org/10.1164/rccm.201302-0365OC

    Article  PubMed  Google Scholar 

  15. Janetzki S, Schaed S, Blachere NEB, Ben-Porat L, Houghton AN, Panageas KS (2004) Evaluation of Elispot assays: influence of method and operator on variability of results. J Immunol Methods 291:175–183. https://doi.org/10.1016/j.jim.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  16. Janetzki S, Panageas KS, Ben-Porat L, Boyer J, Britten CM, Clay TM, et al. Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol Immunother 2008;57:303–315. doi: https://doi.org/10.1007/s00262-007-0380-6

  17. Tuuminen T, Tavast E, Väisänen R, Himberg J-J, Seppälä I. Assessment of imprecision in gamma interferon release assays for the detection of exposure to Mycobacterium tuberculosis. Clin Vaccine Immunol 2010;17:596–601. doi: https://doi.org/10.1128/CVI.00320-09

  18. Oxford Immunotec. T-SPOT.TB test 96-Well Plate Format (TB.200) PACKAGE INSERT [Internet]. 2009 [cited 2012 1]; http://www.oxfordimmunotec.com

  19. FDA, U.S. Food and Drug Administration. PM A P070006: FDA summary of safety and effectiveness data [Internet]. FDA, U.S. Food and Drug Administration; 2008. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cftopic/pma/pma.cfm?num=p070006

  20. Rego K, Pereira K, MacDougall J, Cruikshank W (2018) Utility of the T-SPOT®.TB test’s borderline category to increase test resolution for results around the cut-off point. Tuberculosis (Edinb) 108:178–185. https://doi.org/10.1016/j.tube.2017.12.005

    Article  Google Scholar 

  21. Zhang H-C, Ruan Q-L, Wu J, Zhang S, Yu S-L, Wang S, et al. Serial T-SPOT.TB in household contacts of tuberculosis patients: a 6-year observational study in China. Int. J Tuberc Lung Dis 2019;23:989–995. doi: https://doi.org/10.5588/ijtld.18.0252

  22. Ewer K, Millington KA, Deeks JJ, Alvarez L, Bryant G, Lalvani A (2006) Dynamic antigen-specific T-cell responses after point-source exposure to Mycobacterium tuberculosis. Am J Respir Crit Care Med 174:831–839. https://doi.org/10.1164/rccm.200511-1783OC

  23. Dutta NK, Karakousis PC (2014) Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 78:343–371. https://doi.org/10.1128/MMBR.00010-14

    Article  PubMed  PubMed Central  Google Scholar 

  24. Clifford V, He Y, Zufferey C, Connell T, Curtis N (2015) Interferon gamma release assays for monitoring the response to treatment for tuberculosis: a systematic review. Tuberculosis (Edinb) 95:639–650. https://doi.org/10.1016/j.tube.2015.07.002

    Article  CAS  Google Scholar 

  25. Perry S, Parsonnet J (2005) Commentary: H. pylori infection in early life and the problem of imperfect tests. Int J Epidemiol 34:1356–1358. https://doi.org/10.1093/ije/dyi243

    Article  PubMed  Google Scholar 

  26. Perry S, Sanchez L, Yang S, Agarwal Z, Hurst P, Parsonnet J (2008) Reproducibility of QuantiFERON-TB gold in-tube assay. Clin Vaccine Immunol 15:425–432. https://doi.org/10.1128/CVI.00398-07

  27. Brodhun B, Altmann D, Hauer B, Haas W. Bericht zur Epidemiologie der Tuberkulose in Deutschland für 2017. 2018; www.rki.de/tuberkulosedoi:https://doi.org/10.17886/rkipubl-2018-002

  28. Bienek DR, Chang CK (2009) Evaluation of an interferon-gamma release assay, T-SPOT.TB, in a population with a low prevalence of tuberculosis. Int J Tuberc Lung Dis 13:1416–1421

    CAS  PubMed  Google Scholar 

  29. Talbot EA, Harland D, Wieland-Alter W, Burrer S, Adams LV (2012) Specificity of the tuberculin skin test and the T-SPOT.TB assay among students in a low-tuberculosis incidence setting. J Am Coll Heal 60:94–96. https://doi.org/10.1080/07448481.2011.580029

    Article  Google Scholar 

  30. Meier T, Eulenbruch H-P, Wrighton-Smith P, Enders G, Regnath T (2005) Sensitivity of a new commercial enzyme-linked immunospot assay (T SPOT-TB) for diagnosis of tuberculosis in clinical practice. Eur J Clin Microbiol Infect Dis 24:529–536. https://doi.org/10.1007/s10096-005-1377-8

    Article  CAS  PubMed  Google Scholar 

  31. Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139. https://doi.org/10.1038/ni1033

    Article  CAS  PubMed  Google Scholar 

  32. Bae W, Park KU, Song EY, Kim SJ, Lee YJ, Park JS, et al. Comparison of the sensitivity of QuantiFERON-TB gold in-tube and T-SPOT.TB according to patient age. PLoS One 2016;11:e0156917. doi: https://doi.org/10.1371/journal.pone.0156917

  33. Johnston RN, Ritchie RT, Murray IH (1963) Declining tuberculin sensitivity with advancing age. Br Med J 21(2):720–724. https://doi.org/10.1136/bmj.2.5359.720

    Article  Google Scholar 

  34. Grzybowski S, Allen EA (1964) The challenge of tuberculosis in decline. A study based on the epidemiology of tuberculosis in Ontario, Canada. Am Rev Respir Dis 90:707–720. https://doi.org/10.1164/arrd.1964.90.5.707

    Article  CAS  PubMed  Google Scholar 

  35. Karam F, Mbow F, Fletcher H, Senghor CS, Coulibaly KD, LeFevre AM et al (2008) Sensitivity of IFN-gamma release assay to detect latent tuberculosis infection is retained in HIV-infected patients but dependent on HIV/AIDS progression. PLoS One 3:e1441. https://doi.org/10.1371/journal.pone.0001441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TM designed the study, performed data and statistical analysis. Both authors contributed to writing the manuscript.

Corresponding author

Correspondence to Thomas Meier.

Ethics declarations

Conflict of interest

TM had received honoraria from Oxford Immunotec for speaking at symposia and teaching practical T-SPOT.TB test processing. ME does not have any conflict of interest. Oxford Immunotec had no role in study design, data collection and analysis, decision to publish or manuscript preparation.

Ethics approval

The Ethics Committee of the Landesärztekammer Baden-Württemberg approved the study (reference F-2019-059).

Consent to participate

No informed consent was required since this was a retrospective study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  • Expected conversions % =(1 − NPV) × SE + NPV × (1 − SP) [26]

  • Expected reversions % =PPV × (1 − SE) + (1 − PPV) × SP [26]

    $$ {\displaystyle \begin{array}{c}\mathrm{NPV}=\frac{\mathrm{SP}\times \left(1-\mathrm{PRE}\right)}{\mathrm{SP}\times \left(1-\mathrm{PRE}\right)+\left(1-\mathrm{SE}\right)\times \mathrm{PRE}}\\ {}\mathrm{PPV}=\frac{\mathrm{PRE}\times \mathrm{SE}}{\mathrm{PRE}\times \mathrm{SE}+\left(1-\mathrm{PRE}\right)\times \left(1-\mathrm{SP}\right)}\end{array}} $$

where NPV, PPV, SE, SP and PRE are the negative predictive value, positive predictive value, sensitivity, specificity and prevalence of TB infection, respectively.

The rate of 15.1% initially positive subjects is assumed to reflect the prevalence of TB infection in our study population.

Calculation example for the observed frequency of 1.3% conversions:

For sensitivity = 0.970, the specificity is 0.992.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meier, T., Enders, M. High reproducibility of the interferon-gamma release assay T-SPOT.TB in serial testing. Eur J Clin Microbiol Infect Dis 40, 85–93 (2021). https://doi.org/10.1007/s10096-020-03997-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-020-03997-3

Keywords

Navigation