Skip to main content
Log in

Synthesis and Study of Mechanical Properties of Polyelectrolyte Ferrogels Based on Strontium Ferrite Particles

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Ferrogels have been synthesized on the basis of a copolymer matrix of acrylamide and potassium acrylate filled with magnetic particles of strontium ferrite SrFe12O19, the distribution of which was set by applying magnetic field of 15 and 420 mT. It has been shown that the degree of swelling of ferrogels decreases with the introduction of particles. It has been shown that the application of a magnetic field forms chain structures in bulk ferrogel, which contribute to an increase in the elastic modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Zrínyi, M., Barsi, L., and Büki, A., Ferrogel: A new magneto-controlled elastic medium, Polym. Gels Networks, 1997, vol. 5, no. 5, pp. 415–427.

    Article  Google Scholar 

  2. Filipcsei, G. and Zrínyi, M., Magnetodeformation effects and the swelling of ferrogels in a uniform magnetic field, J. Phys.: Condens. Matter, 2010, vol. 22, no. 27, pp. 7779–7787.

    Google Scholar 

  3. Xulu, P.M., Filipcsei, G., and Zrínyi, M., Preparation and responsive properties of magnetically soft poly (N-isopropylacrylamide) gels, Macromolecules, 2000, vol. 33, pp. 1716–1719.

    Article  CAS  Google Scholar 

  4. Galicia, J.A., Sandre, O., Cousin, F., Guemghar, D., Ménager, C., and Cabuil, V., Designing magnetic composite materials using aqueous magnetic fluids, J. Phys.: Condens. Matter, 2003, vol. 15, no. 15, pp. S1379–S1402.

    CAS  Google Scholar 

  5. Galicia, J.A., Cousin, F., Dubois, E., Sandre, O., Cabiul, V., and Perzynski, R., Static and dynamic structural probing of swollen polyacrylamide ferrogels, Soft Matter, 2009, vol. 5, pp. 2614–2624.

    CAS  Google Scholar 

  6. Galicia, J.A., Cousin, F., Dubois, E., Sandre, O., Cabuil, V., and Perzynski, R., Local structure of polymeric ferrogels, J. Magn. Magn. Mater., 2011, vol. 323, no. 10, pp. 1211–1215.

    Article  CAS  Google Scholar 

  7. Philippova, O.E., Responsive polymer gels, Polym. Sci., Ser. C, 2000, vol. 42, no. 2, pp. 208–228.

    Google Scholar 

  8. Kurlyandskaya, G.V. and Fal Miyar, V., Surface modified amorphous ribbon based magnetoimpedance biosensor, Biosens. Bioelectron., 2007, vol. 22, nos. 9–10, pp. 2341–2345.

  9. Ong, K.G., Wang, J., Singh, R.S., Bachas, L.G., and Grimes, C.A., Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing, Biosens. Bioelectron., 2001, vol. 16, nos. 4–5, pp. 305–312.

  10. Huang, S., Yang, H., Lakshmanan, R.S., Johnson, M.L., Wan, J., Chen, I.H., Wikle, H.C., Petrenko, V.A., Barbaree, J.M., and Chin, B.A., Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor, Biosens. Bioelectron., 2009, vol. 24, pp. 1730–1736.

    Article  CAS  Google Scholar 

  11. Lopes, A.C., Sagasti, A., Lasheras, A., Muto, V., Gutiérrez, J., Kouzoudis, D., and Barandiarán, J.M., Accurate determination of the Q quality factor in magnetoelastic resonant platforms for advanced biological detection, Sensors, 2018, vol. 18, pp. 887–898.

    Article  Google Scholar 

  12. Safronov, A.P., Mikhnevich, E.A., Lotfollahi, Z., Blyakhman, F.A., Sklyar, T.F., Larrañaga, V.A., Medvedev, A.I., Fernández Armas, S., and Kurlyandskaya, G.V., Polyacrylamide ferrogels with magnetite or strontium hexaferrite: next step in the development of soft biomimetic matter for biosensor applications, Sensors, 2018, vol. 18, p. 257.

    Article  Google Scholar 

  13. Shankar, A., Safronov, A.P., Mikhnevich, E.A., Beketov, I.V., and Kurlyandskaya, G.V., Ferrogels based on entrapped metallic iron nanoparticles in polyacrylamide network: extended Derjaguin–Landau–Verwey–Overbeek consideration, interfacial interactions and magnetodeformation, Soft Matter, 2017, vol. 13, pp. 3359–3372.

    Article  CAS  Google Scholar 

  14. Safronov, A.P., Terziyan, T.V., Istomina, A.S., and Beketov, I.V., Swelling and contraction of ferrogels based on polyacrylamide in a magnetic field, Polym. Sci., Ser. A, 2012, vol. 54, no. 1, pp. 26–33.

    Article  CAS  Google Scholar 

  15. Hiemenz, P.C. and Rajagopalan, R., Principles of Colloid and Surface Chemistry, New York: Marcel Dekker, 1997.

    Google Scholar 

  16. Haraguchi, K., Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures, Polym. J., 2011, vol. 43, pp. 223–241.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 18-19-00090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mikhnevich.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhnevich, E.A., Chebotkova, P.D. & Safronov, A.P. Synthesis and Study of Mechanical Properties of Polyelectrolyte Ferrogels Based on Strontium Ferrite Particles. Inorg. Mater. Appl. Res. 11, 855–860 (2020). https://doi.org/10.1134/S2075113320040267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320040267

Keywords:

Navigation