Skip to main content
Log in

Performance Analysis Over Unified Generalized Composite Fading Model

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper utilizes the unified signal-to-noise-ratio (SNR) composite distribution of \(\alpha -\kappa -\mu\)/lognormal (LN) as well as \(\alpha -\eta -\mu\)/LN fading channels, i.e., generalized/lognormal (GL) distribution to derive and analyse different performance metrics of digital communication system. Specifically, for coherent as well as non-coherent modulation techniques the average symbol error probability (ASEP) expressions using maximal ratio combining (MRC) diversity method are derived and utilized to carry out the asymptotic analysis of ASEP. Other metrics such as channel capacity and outage probability are also deduced and the influence of different multipath and shadowing parameters on system performance is further examined. Analytical results are supplemented with numerical results as well as Monte-Carlo simulations for validating our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. 5G use cases and requirements. (2014). Nokia Networks, Nokia White Paper.

  2. Fraidenraich, G., & Yacoub, M. D. (2006). The \(\alpha -\eta -\mu\) and \(\alpha -\kappa -\mu\) fading distributions. In Proceedings of IEEE ninth international symposium on spread spectrum techniques and applications (pp. 16–20).

  3. Yacoub, M. D. (2007). The \(k-\mu\) distribution and the \(\eta -\mu\) distribution. IEEE Antennas Propagation Magazine, 49, 68–81.

    Article  Google Scholar 

  4. Yacoub, M. D. (2007). The \(\alpha -\mu\) distribution: A physical fading model for the stacy distribution. IEEE Transactions on Vehicular Technology, 56(1), 27–34.

    Article  Google Scholar 

  5. Peppas, K., Lazarakis, F., Alexandridis, A., & Dangakis, K. (2009). Error performance of digital modulation schemes with MRC diversity reception over \(\eta -\mu\) fading channels. IEEE Transactions on Wireless Communications, 8(49), 74–80.

    Google Scholar 

  6. Salahat, E., & Hakam, A. (2014). Performance analysis of \(\alpha -\eta -\mu\) and \(\alpha -\kappa -\mu\) generalized mobile fading channels. In Proceedings of 20th European wireless conference, Barcelona, Spain (pp. 1–6).

  7. Badarneh, O. S. (2015). Error rate analysis of \(M\)-ary phase shift keying in \(\alpha {-}\eta - \mu\) fading channels subject to additive laplacian noise. IEEE Communications Letters, 19(12), 53–6.

    Google Scholar 

  8. Badarneh, O. S., & Aloqlah, M. S. (2016). Performance analysis of digital communication systems over \(\alpha {-}\eta {-}\mu\) fading channels. IEEE Transactions on Vehicular Technology, 65(79), 72–81.

    Google Scholar 

  9. Badarneh, O. S., Aldalgamouni, T., & Almehmadi, F. S. (2017). A unified framework for performance evaluation over generalized fading channels. Telecommunications Systems, 64, 669–678.

    Article  Google Scholar 

  10. Sofotasios, P. C., et al. (2018). Capacity analysis under generalized composite fading conditions. In International conference on advanced communication technologies and networking (CommNet), Marrakech (pp. 1–10).

  11. Al-Hmood, H., & Al-Raweshidy, H. S. (2017). Unified modeling of composite \(\kappa -\mu /Gamma\), \(\eta -\mu /Gamma\), and \(\alpha -\mu /Gamma\) fading channels using a mixture gamma distribution with applications to energy detection. IEEE Antennas Wireless Propagation Letters, 16, 104–108.

    Article  Google Scholar 

  12. Al-Hammadi, A., et al. (2016). Unified analysis of cooperative spectrum sensing over composite and generalized fading channels. IEEE Transacitons on Vehicular Technology, 65(9), 6949–6961.

    Article  Google Scholar 

  13. Bhatt, M., & Soni, S. K. (2018). A unified performance analysis of energy detector over \(\alpha -\eta -\mu\)/Lognormal and \(\alpha -\kappa -\mu\)/lognormal composite fading channels with diversity and cooperative spectrum sensing. International Journal on Electronics Communications (AEU), 94, 367–376.

    Article  Google Scholar 

  14. Khandelwal, V., & Karmeshu, (2014). A new approximation for average symbol error probability over log-normal channels. IEEE Wireless Communications Letters, 3(1), 58–61.

    Article  Google Scholar 

  15. Wu, M., Lin, X., & Kam, P. (2011). New exponential lower bounds on the Gaussian Q-function via Jensen’s inequality. In Proceedings of the 2011 IEEE VTC Spring (pp. 1–5).

  16. Chang, S. H., Cosman, P. C., & Milstein, L. B. (2011). Chernoff-type bounds for the Gaussian error function. IEEE Transactions on Communications, 59, 2939–2944.

    Article  Google Scholar 

  17. Chiani, M., Dardari, D., & Simon, M. K. (2003). New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Transaction on Wireless Communication, 2, 840–845.

    Article  Google Scholar 

  18. Olabiyi, O., & Annamalai, A. (2012). Invertible exponential-type approximations for the Gaussian probability integral Q(x) with applications. IEEE Communications Letters, 1(5), 544–547.

    Article  Google Scholar 

  19. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). CA: Academic Press.

    MATH  Google Scholar 

  20. Chauhan, P. S., Kumar, S., & Soni, S. K. (2019). New approximate expressions of average symbol error probability, probability of detection and AUC with MRC over generic and composite fading channels. International Journal of Electronics and Communications (AEU), 99, 119–129.

    Article  Google Scholar 

  21. Adamchik, V. S., & Marichev, O. I. (1990). The algorithm for calculating integrals of hypergeometric type functions and its realization in reduced system. Philadelphia: ACM.

    Google Scholar 

  22. Retrieved August, 2017, from http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/01/.

  23. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integrals and series volume 3: More special functions (1st ed.). New York: Gordon and Breach.

    MATH  Google Scholar 

  24. Cook, I., Jr. (1981). The H-function and probability density functions of certain algebraic combinations of independent random variables with H-function probability distribution. DTIC Document, Tech Rep.

  25. Wang, Z., & Giannakis, G. B. (2003). A simple and general parametrization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.

    Article  Google Scholar 

  26. Peppas, K. P., Efthymoglou, G., Aalo, V. A., Alwakeel, M., & Alwakeel, S. (2015). Energy detection of unknown signals in Gamma-shadowed Rician fading environments with diversity reception. IET Communications, 9(2), 196–210.

    Article  Google Scholar 

  27. Shanker, P. M. (2012). Fading and shadowing in wireless systems. New York: Springer.

    Book  Google Scholar 

  28. Simon, M. K., & Alouini, M. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.

    Google Scholar 

  29. Rana, V., Chauhan, P. S., Soni, S. K., & Bhatt, M. (2017). A new closed-form of ASEP and channel capacity with MRC and selection combining over Inverse Gaussian shadowing. International Journal on Electronics Communications (AEU), 74, 107–115.

    Article  Google Scholar 

  30. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integral and series volume 1: Elementary functions (1st ed.). New York: Gordon and Breach.

    MATH  Google Scholar 

  31. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  32. Tiwari, D., Soni, S. K., & Chauhan, P. S. (2017). A new closed-form expressions of channel capacity with MRC, EGC and SC over lognormal fading channel. Wireless Personal Communications, 97(3), 4183–4197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Soni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, M., Soni, S.K. Performance Analysis Over Unified Generalized Composite Fading Model. Wireless Pers Commun 115, 1919–1933 (2020). https://doi.org/10.1007/s11277-020-07661-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07661-z

Keywords

Navigation