Skip to main content
Log in

Remediation of Trichloroethylene-Contaminated Groundwater by Sulfide-Modified Nanoscale Zero-Valent Iron Supported on Biochar: Investigation of Critical Factors

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigated the feasibility and mechanism of sulfide-modified nanoscale zero-valent iron supported on biochar (S-nZVI@BC) for the removal of TCE in the scenario of groundwater remediation. The effects of some critical factors, including pyrolysis temperature of biochar, mass ratio of S-nZVI to BC, initial pH, typical groundwater compositions, co-contaminants, and particle aging time, on the TCE removal were examined. The results revealed that the different pyrolysis temperatures could change physicochemical properties of BC, which influenced the TCE adsorption and degradation by S-nZVI@BC. The mass ratio of S-nZVI to BC could determine the extent of adsorption and degradation of TCE. The total removal of TCE was not significantly influenced by the initial pH (3.0–9.0), but the degradation of TCE was enhanced at higher pH. Notably, the typical anions (SO42−, HCO3, and HPO42−), humic acid, and co-contaminants (Cr(VI) and NO3) in groundwater all slightly influenced the total removal of TCE, but markedly inhibited its degradation. Additionally, after exposure to air over different times (5 days, 10 days, 20 days, and 30 days), the reactivity of S-nZVI@BC composites was apparently decreased due to surface passivation. Nevertheless, the aged S-nZVI@BC composites still maintained relative high removal and degradation of TCE when the reaction time prolonged. Overall, the results showed that the S-nZVI@BC, combining the high adsorption capacity of BC and the high reductive capacity of S-nZVI, had a much better performance than the single S-nZVI or BC, suggesting that S-nZVI@BC is one promising material for the remediation of TCE-contaminated groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544.

    CAS  Google Scholar 

  • Butler, E. C., & Hayes, K. F. (2001). Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal. Environmental Science & Technology, 35, 3884–3891.

    CAS  Google Scholar 

  • Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42, 5137–5143.

    CAS  Google Scholar 

  • Cheng, Y. J., Dong, H., Lu, Y., Hou, K., Wang, Y., Ning, Q., Li, L., Wang, B., Zhang, L., & Zeng, G. (2019). Toxicity of sulfide-modified nanoscale zero-valent iron to Escherichia coli in aqueous solutions. Chemosphere, 220, 523–530.

    CAS  Google Scholar 

  • De Janeiro, R. (1990). The role of chloride and sulphate anions in the iron dissolution mechanism studied by impedance measurements. Electrochimica Acta, 35, 1003–1009.

    Google Scholar 

  • Deng, J. M., Dong, H. R., Zhang, C., Jiang, Z., & Cheng, Y. J. (2018). Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine. Separation and Purification Technology, 202, 130–137.

    CAS  Google Scholar 

  • Dong, H., Zhao, F., Zeng, G., Tang, L., Fan, C., Zhang, L., Zeng, Y., He, Q., Xie, Y., & Wu, Y. (2016). Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: chemical transformation and structural evolution. Journal of Hazardous Materials, 312, 234–242.

    CAS  Google Scholar 

  • Dong, H., Deng, J., Xie, Y., Zhang, C., & Jiang, Z. (2017a). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr (VI) removal from aqueous solution. Journal of Hazardous Materials, 332, 79–86.

    CAS  Google Scholar 

  • Dong, H., Zhang, C., Hou, K., Cheng, Y., Deng, J., Jiang, Z., Tang, L., & Zeng, G. (2017b). Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution. Separation and Purification Technology, 188, 188–196.

    CAS  Google Scholar 

  • Dong, H., Zhang, C., Deng, J., Jiang, Z., Zhang, L., Cheng, Y., Hou, K., Tang, L., & Zeng, G. (2018). Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Research, 135, 1–10.

    CAS  Google Scholar 

  • Dong, H., Wang, B., Li, L., Wang, Y., Ning, Q., Tian, R., Li, R., Chen, J., & Xie, Q. (2019). Activation of persulfate and hydrogen peroxide by using sulfide-modified nanoscale zero-valent iron for oxidative degradation of sulfamethazine: a comparative study. Separation and Purification Technology, 218, 113–119.

    CAS  Google Scholar 

  • Dong, H., Li, L., Wang, Y., Ning, Q., Wang, B., & Zeng, G. (2020). Aging of zero-valent iron-based nanoparticles in aqueous environment and the consequent effects on their reactivity and toxicity. Water Environ Res. https://doi.org/10.1002/wer.1265.

  • Fan, D., O’Brien Johnson, G., Tratnyek, P. G., & Johnson, R. L. (2016). Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR). Environmental Science & Technology, 50, 9558–9565.

    CAS  Google Scholar 

  • Giasuddin, A. B. M., Kanel, S. R., & Choi, H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environmental Science & Technology, 41, 2022–2027.

    CAS  Google Scholar 

  • Guan, X., Sun, Y., Qin, H., Li, J., Lo, I. M. C., He, D., & Dong, H. (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014). Water Research, 75, 224–248.

    CAS  Google Scholar 

  • Han, Y., & Yan, W. (2016). Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment. Environmental Science & Technology, 50, 12992–13001.

    CAS  Google Scholar 

  • Hassan, S. M. (2000). Reduction of halogenated hydrocarbons in aqueous media: I. Involvement of sulfur in iron catalysis. Chemosphere, 40, 1357–1363.

    CAS  Google Scholar 

  • Kilduff, J. E., & Karanfil, T. (2002). Trichloroethylene adsorption by activated carbon preloaded with humic substances: effects of solution chemistry. Water Research, 36, 1685–1698.

    CAS  Google Scholar 

  • Kim, E. J., Murugesan, K., Kim, J. H., Tratnyek, P. G., & Chang, Y. S. (2013). Remediation of trichloroethylene by fes-coated iron nanoparticles in simulated and real groundwater: effects of water chemistry. Industrial and Engineering Chemistry Research, 52, 9343–9350.

    CAS  Google Scholar 

  • Li, D., Mao, Z., Zhong, Y., Huang, W., Wu, Y., & Peng, P. (2016). Reductive transformation of tetrabromobisphenol A by sulfidated nano zerovalent iron. Water Research, 103, 1–9.

    Google Scholar 

  • Li, P., Lin, K., Fang, Z., Zhang, W., 2018. Degradation of nitrate and secondary pollution in drinking water by S-NZVI prepared from steel pickling waste liquor. Journal of Hydro-Environment Research. 0–1.

  • Li, R., Dong, H., Tian, R., Chen, J., & Xie, Q. (2020a). Activation of sulfite by different Fe0-based nanomaterials for oxidative removal of sulfamethazine in aqueous solution. Separation and Purification Technology, 250, 117230.

    CAS  Google Scholar 

  • Li, Z., Sun, Y. Q., Yang, Y., Han, Y. T., Wang, T. S., Chen, J. W., & Tsang, D. C. W. (2020b). Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. Journal of Hazardous Materials, 383, 121240.

    CAS  Google Scholar 

  • Liang, B., Cheng, H. Y., Kong, D. Y., Gao, S. H., Sun, F., Cui, D., Kong, F. Y., Zhou, A. J., Liu, W. Z., Ren, N. Q., Wu, W. M., Wang, A. J., & Lee, D. J. (2013). Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode. Environmental Science & Technology, 47, 5353–5361.

    CAS  Google Scholar 

  • Lipczynska-kochany, E., Consultant, E., Milburn, R.R., Nadarajah, N., 1994. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds 6535.

  • Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 41, 7881–7887.

    CAS  Google Scholar 

  • Liu, Z. L., Tian, D., Shen, F., Long, L. L., Zhang, Y. Z., Yang, G., Zeng, Y. M., Zhang, J., He, J. S., Zhu, Y., & Deng, S. H. (2019). Elucidating dominant factors of PO43−, Cd2+ and nitrobenzene removal by biochar: a comparative investigation based on distinguishable biochars. Chinese Chem Lett, 30, 2221–2224.

    CAS  Google Scholar 

  • Mandal, S., Pu, S. Y., Adhikari, S., Ma, H., Kim, D. H., Bai, Y. C., & Hou, D. Y. (2020). Progress and future prospects in biochar composites: application and reflection in the soil environment. Crit. Rev. Env. Sci. Tec. https://doi.org/10.1080/10643389.2020.1713030.

  • Ning, Q., Dong, H. R., Li, L., Wang, Y. Y., & Wang, B. (2020). Removal of trichloroethylene by sulfide-modified nanoscale zerovalent iron coated with different stabilizers in aqueous solution. Water Air Soil Poll., 231, 161. https://doi.org/10.1007/s11270-020-04550-w.

    Article  CAS  Google Scholar 

  • Pang, H. W., Diao, Z. F., Wang, X. X., Ma, Y., Yu, S. J., Zhu, H. T., Chen, Z. S., Hu, B. W., Chen, J. R., & Wang, X. K. (2019). Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater. Chemical Engineering Journal, 366, 368–377.

    CAS  Google Scholar 

  • Sarathy, V., Tratnyek, P. G., Nurmi, J. T., Baer, D. R., Amonette, J. E., Chun, C. L., Penn, R. L., & Reardon, E. J. (2008). Aging of iron nanoparticles in aqueous solution: effects on structure and reactivity. Journal of Physical Chemistry C, 112, 2286–2293.

    CAS  Google Scholar 

  • Shi, L. N., Zhang, X., & Chen, Z. L. (2011). Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45, 886–892.

    CAS  Google Scholar 

  • Su, Y., Adeleye, A. S., Keller, A. A., Huang, Y., Dai, C., Zhou, X., & Zhang, Y. (2015). Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Research, 74, 47–57.

    CAS  Google Scholar 

  • Sun, Y. Q., Yu, I. K. M., Tsang, D. C. W., Cao, X. D., Lin, D. H., Wang, L. L., Graham, N. J. D., Alessi, D. S., Komarek, M., Ok, Y. S., Feng, Y. J., & Li, X. D. (2019). Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environment International, 124, 521–532.

    CAS  Google Scholar 

  • Tanboonchuy, V., Grisdanurak, N., & Liao, C. H. (2012). Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. Journal of Hazardous Materials, 205–206, 40–46.

    Google Scholar 

  • Tian, R., Dong, H., Chen, J., Li, R., & Xie, Q. (2020). Amorphous Co3O4 nanoparticles-decorated biochar as an efficient activator of peroxymonosulfate for the removal of sulfamethazine in aqueous solution. Separation and Purification Technology, 250, 117246.

    CAS  Google Scholar 

  • Utsumi, S. (2006). New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bulletin of the Chemical Society of Japan, 25(3), 226–226.

    Google Scholar 

  • Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S., & Xing, B. (2013). Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 174, 289–296.

    CAS  Google Scholar 

  • Wang, Y., Dong, H., Li, L., Tian, R., Chen, J., Ning, Q., Wang, B., Tang, L., & Zeng, G. (2019). Influence of feedstocks and modification methods on biochar’s capacity to activate hydrogen peroxide for tetracycline removal. Bioresource Technology, 291, 121840.

    CAS  Google Scholar 

  • Wang, B., Dong, H. R., Li, L., Wang, Y. Y., Ning, Q., Tang, L., & Zeng, G. M. (2020). Influence of different co-contaminants on trichloroethylene removal by sulfide-modified nanoscale zero-valent iron. Chemical Engineering Journal, 381, 122773.

    CAS  Google Scholar 

  • Xie, L., & Shang, C. (2005). Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environmental Science & Technology, 39, 1092–1100.

    CAS  Google Scholar 

  • Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., Creamer, A. E., Sun, Y., & Yang, L. (2014). Characterization and environmental applications of clay-biochar composites. Chemical Engineering Journal, 242, 136–143.

    CAS  Google Scholar 

  • Yen, M. Y., Teng, C. C., Hsiao, M. C., Liu, P. I., Chuang, W. P., Ma, C. C. M., Hsieh, C. K., Tsai, M. C., & Tsai, C. H. (2011). Platinum nanoparticles/graphene composite catalyst as a novel composite counter electrode for high performance dye-sensitized solar cells. Journal of Materials Chemistry, 21, 12880–12888.

    CAS  Google Scholar 

  • Zhang, D., Li, Y., Tong, S., Jiang, X., Wang, L., Sun, X., Li, J., Liu, X., & Shen, J. (2018). Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene. RSC Advances, 8, 22161–22168.

    CAS  Google Scholar 

  • Zhang, W., Qian, L., Ouyang, D., Chen, Y., Han, L., & Chen, M. (2019a). Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: enhanced adsorption and crystallization. Chemosphere, 221, 683–692.

    CAS  Google Scholar 

  • Zhang, D. J., Shen, J. Y., Shi, H. F., Su, G. Y., Jiang, X. B., Li, J. S., Liu, X. D., Mu, Y., & Wang, L. J. (2019b). Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: process and mechanisms. Environment International, 131, 105020.

    CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (51879100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoran Dong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 14407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Dong, H., Tian, R. et al. Remediation of Trichloroethylene-Contaminated Groundwater by Sulfide-Modified Nanoscale Zero-Valent Iron Supported on Biochar: Investigation of Critical Factors. Water Air Soil Pollut 231, 432 (2020). https://doi.org/10.1007/s11270-020-04797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04797-3

Keywords

Navigation