Skip to main content
Log in

Shallow Subsurface Environmental Remediation by Using Tracer–Surfactant–Foam Processes: History-Matching and Performance Prediction

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In situ subsurface remediation has been widely used as an efficient means of cleaning up non-aqueous phase liquid (NAPL) from contaminated soils and aquifer. The use of tracer, surfactant and foam is often considered to keep track of the propagation of injected fluids in the medium, dissolve and mobilize contaminants trapped by capillary forces, and overcome the level of heterogeneity and improve displacement and sweep efficiencies. This study shows an actual remediation process to reduce NAPL within a military base in South Korea, by injecting tracer and surfactant solutions together for a duration of 10 days. The site consists of 5 m-by-5 m area with 3 m depth under the existing structure of fuel-distribution facility. The results show that (a) computer simulations can be successfully performed to history-match the production of tracer and oil species from three extraction wells during field tracer and surfactant injection tests and (b) such a successful match can be combined with identification of the major pattern of the heterogeneity in the site. With estimated foam strengths from separate column tests, this study further extends the scope to the use of surfactant–foam remediation processes to examine how foam with a reduced gas mobility (causing higher apparent foam viscosity and pressure gradient) helps mobilizing and producing more oil, hence leading to improved displacement efficiency. Surfactant/foam processes are shown to have potential in overcoming subsurface heterogeneity and thus improving overall in situ remediation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Alexandersen, D.K., Headley, T., Prigent, S., Mahmutoglu, I.: Ex-situ bioremediation of hydrocarbon contaminated soil—an example from Oman. Paper presented at the SPE Middle East Heal. Safety, Environ. Sustain Dev. Conf. Exhib, Doha, Qatar, 22–24 Sept 2014. http://doi.org/10.2118/170411-MS

  • Alleman, B.C., Bedient, P.B., Borden, R.C.: Bioremediation of chlorinated solvent plumes. In: Ward, C.H., Stroo, H.F. (eds.), In Situ Remediation of Chlorinated Solvent Plumes, pp. 309–318. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1401-9

  • Brooks, R.H., Corey, A.T.: Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. 92, 61–90 (1966)

    Google Scholar 

  • Cherry, J.A.: Groundwater contamination by petroleum products. Paper presented at the 12th World Pet. Congr., Houston, TX, 26 April 1987

  • Ciocirlan, O., Iulian, O.: Density, viscosity and refractive index of the dimethyl sulfoxide + xylene system. J. Serbian Chem. Soc. 74, 317–329 (2009). https://doi.org/10.2298/JSC0903317C.317

    Article  Google Scholar 

  • Cooke, C.E., Jr.: Method of determining fluid saturations in reservoir. US Patent 3,590,923, 6 July 1971. https://doi.org/10.1016/B978-075067785-1/50017-8

  • Farajzadeh, R., Bertin, H., Rossen, W.R.: Editorial to the special issue: foam in porous media for petroleum and environmental engineering—experience sharing. Transp. Porous Med. 131, 1–3 (2020). https://doi.org/10.1007/s11242-019-01329-4

    Article  Google Scholar 

  • Gary, P.R.: NORM contamination in the petroleum industry. J. Pet. Technol. 45, 12–16 (1993). https://doi.org/10.2118/22880-PA

    Article  Google Scholar 

  • Hirasaki, G.J., Zhang, D.L.: Surface chemistry of oil recovery from fractured oil-wet carbonate formations. SPE J. 9(2), 151–162 (2004). https://doi.org/10.2118/88365-PA

    Article  Google Scholar 

  • Izadi, M., Kam, S.I.: Investigating supercritical CO2 foam propagation distance: conversion from strong foam to weak foam vs. gravity segregation. Transp. Porous Mediax 131, 223–250 (2020)

    Article  Google Scholar 

  • Jin, M., Delshad, M., Dwarakanath, V., McKinney, D.C., Pope, G.A., Sepehrnoori, K., Tilburg, C.E., Jackson, R.E.: Partitioning tracer test for detection, estimation, and remediation performance assessment of subsurface non-aqueous phase liquids. Water Resour. Res. 31, 1201–1211 (1995). https://doi.org/10.1029/95WR00174

    Article  Google Scholar 

  • Kam, S.I., Rossen, W.R.: A model for foam generation in homogeneous media. Soc. Pet. Eng. J. 8, 417–425 (2003). https://doi.org/10.2118/87334-PA

    Article  Google Scholar 

  • Karthick, A., Chauhan, M., Krzan, M., Chattopadhyay, P.: Potential of surfactant foam stabilized by ethylene glycol and allyl alcohol for the remediation of diesel contaminated soil. Environ. Technol. Innov. 14, 1–10 (2019a)

    Article  Google Scholar 

  • Karthick, A., Roy, B., Chattopadhyay, P.: A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil. J. Environ. Manag. 243, 187–205 (2019b)

    Article  Google Scholar 

  • Lee, S., Lee, G., Kam, S.I.: Three-phase fractional flow analysis for foam-assisted non-aqueous phase liquid (NAPL) remediation. Transp. Porous Med. 101, 373–400 (2014). https://doi.org/10.1007/s11242-013-0250-y

    Article  Google Scholar 

  • Mamun, C.K., Rong, J.G., Kam, S.I., Liljestrand, H.M., Rossen, W.R.: Simulating use of foam in aquifer remediation. In: Hassanizadeh, S.M., Schotting, R.J., Gray, W.G., Pinder, G.F. (eds.) Developments Water Science, vol. 47, pp. 867–874. Elsevier, Amsterdam (2002). https://doi.org/10.1016/S0167-5648(02)80152-6

  • McCarty, P.L.: Groundwater contamination by chlorinated solvents: history, remediation technologies and strategies. In: Ward, C.H., Stroo, H.F. (eds.) In Situ Remediation of Chlorinated Solvent Plumes, pp. 1–24. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1401-9_1

  • Richter, W.: Experience in oil and gas exploration and exploitation with regard to groundwater contamination and groundwater protection. Paper presented at the 7th World Pet. Congr. Mexico City, Mexico, 2–9 April 1967

  • Riser-Roberts, E.: Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes. Lewis, Boca Raton, FL (1998)

    Book  Google Scholar 

  • Roodbari, N.H., Badiei, A., Soleimani, E., Khaniani, Y.: Tweens demulsification effects on heavy crude oil/water emulsion. Arab. J. Chem. 9, 806–811 (2016)

    Article  Google Scholar 

  • Roostapour, A., Kam, S.I.: Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics. J. Hazard. Mater. 243, 37–51 (2012). https://doi.org/10.1016/j.jhazmat.2012.09.014

    Article  Google Scholar 

  • Roostapour, A., Lee, G., Zhong, L., Kam, S.I.: Model fit to experimental data for foam-assisted deep vadose zone remediation. J. Hazard. Mater. 264, 460–473 (2014). https://doi.org/10.1016/j.jhazmat.2013.09.016

    Article  Google Scholar 

  • Rosman, A., Kam, S.I.: Modeling foam-diversion process using three-phase fractional flow analysis in a layered system. Energy Sources Part A 31, 936–955 (2009). https://doi.org/10.1080/15567030701752875

    Article  Google Scholar 

  • Shackelford, C.D., Jefferis, S.A.: Geoenvironmental engineering for in situ remediation. Paper presented at GeoEng. Melbourne, Australia, 19–24 Nov 2000

  • Shojaei, M.J., Osei-Bonsu, K., Grassia, P., Shokri, N.: Foam flow investigation in 3D-printed porous media: fingering and gravitational effects. Ind. Eng. Chem. Res. 57(21), 7275–7281 (2018). https://doi.org/10.1021/acs.iecr.8b00136

    Article  Google Scholar 

  • Simpkin, T.J., Sale, T., Kueper, B.H., Pitts, M.J., Wyatt, K.: Surfactant/Cosolvent Enhanced Recovery of NAPL. In: Lowe, D.F., Oubre, C.L., Ward, C.H. (eds.) Surfactants and Cosolvents for NAPL Remediation, pp. 41–88. Lewis, Boca Raton, FL (1999)

    Google Scholar 

  • Southwick, J.G., van den Pol, E., van Rijn, C.H.T.: Ammonia as alkali for ASP floods—comparison to sodium carbonate. Presented at the SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, 12–16 April 2014. https://doi.org/10.2118/169057-MS

  • Szafranski, R., Lawson, J.B., Hirasaki, G.J., Miller, C.A., Akiya, N., King, S., Jackson, R.E., Meinardus, H., Londergan, J.: Surfactant/foam process for improved efficiency of aquifer remediation. In: Rehage, H., Peschel, G. (eds.) Structure, Dynamics and Properties of Disperse Colloidal Systems. Prog. Colloid Polym. Sci., vol. 111, pp. 162–167. Springer, Heidelberg (1998). https://doi.org/10.1007/bfb0118126

  • Tang, J.S.: Partitioning tracers and in-situ fluid saturation measurements. SPE Form. Eval. J. 10, 33–39 (1995). https://doi.org/10.2118/22344-PA

    Article  Google Scholar 

  • Um, J., Lee, G., Song, S., Hong, S., Lee, M.: Pilot scale feasibility test of in-situ soil flushing by using ‘tween 80’ solution at low concentration for the xylene contaminated site. J. Soil Groundw. Environ. 18, 38–47 (2013). https://doi.org/10.7857/JSGE.2013.18.6.038

    Article  Google Scholar 

  • Winsor, P.A.: Solvent Properties of Amphiphilic Compounds. Butterworths Scientific Publications, London (1954)

    Google Scholar 

  • Zhong, L., Oostrom, M., Truex, M.J., Vermeul, V.R., Szecsody, J.E.: Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J. Hazard. Mater. 244–245, 160–170 (2013). https://doi.org/10.1016/j.jhazmat.2012.11.028

    Article  Google Scholar 

Download references

Acknowledgements

This study is conducted through the supports from LSU Graduate School and collaborative efforts with Korea Rural Community Corporation (KRC) and Rural Research Institute (RRI). A generous donation of CMG STARS simulator from Computer Modeling Group made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleifel, H., Izadi, M., Park, S. et al. Shallow Subsurface Environmental Remediation by Using Tracer–Surfactant–Foam Processes: History-Matching and Performance Prediction. Transp Porous Med 134, 565–592 (2020). https://doi.org/10.1007/s11242-020-01458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01458-1

Keywords

Navigation