Skip to main content

Advertisement

Log in

Low-Temperature Steam Reforming of Ethanol Over Iron Catalysts on Oxide and Carbon Supports

  • Published:
Theoretical and Experimental Chemistry Aims and scope

On the basis of an investigation of the catalytic characteristics of iron-containing catalysts deposited on carbon nanotubes (CNT) and zirconium dioxide in the steam reforming of bioethanol at 300-500 °C it was shown that Fe/CNT exhibits high activity and productivity with respect to hydrogen at relatively low temperature. At this catalyst high conversion of ethanol (94%) and high selectivity for hydrogen (50%) are achieved at 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. R. Rostrup-Nielsen, Phys. Chem. Chem. Phys., 3, 283-288 (2001).

    Article  CAS  Google Scholar 

  2. A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, Energy Fuels, 9, 2098-2106 (2005).

    Article  Google Scholar 

  3. M. Ni, D. Y. C. Leung, and M. K. H. Leung, Int. J. Hydrogen Energy, 32, 3238-3247 (2007).

    Article  CAS  Google Scholar 

  4. P. D. Vaidya, and A. E. Rodrigues, Chem. Eng. J., 117, 39-49 (2006).

    Article  CAS  Google Scholar 

  5. A. Bshish, Z. Yaakob, B. Narayanan, et al., Chemical Papers, 65, 251-266 (2011).

    Article  CAS  Google Scholar 

  6. Yu. I. Pyatnitskii, L. Yu. Dolgikh, I. L. Stolyarchuk, and P. E. Strizhak, Theor. Exp. Chem., 49, No. 5, 277-297 (2013).

    Article  Google Scholar 

  7. J. L. Contreras, J. Salmones, J. A. Colin-Luna, et al., Int. J. Hydrogen Energ., 39, 18835-18853 (2014).

    Article  CAS  Google Scholar 

  8. D. Li and X. Li, J. Gong, Chem. Rev., 116, 11529-11653 (2016).

    Article  CAS  Google Scholar 

  9. S. Ogo and Y. Sekine, Fuel Process. Technol., 199, 106238-106248 (2020).

    Article  CAS  Google Scholar 

  10. M. D. Lazar, L. Senila, M. Dan and M. Mihet, Ethanol: Science and Engineering, Elsevier (2019), pp. 257-288.

  11. J. W. C. Liberatori, U. R. Ribeiro, D. Zanchet, et al., Appl. Catal. A, 327, 197-204 (2007).

    Article  CAS  Google Scholar 

  12. J. P. Breen, R. Burch, and H. M. Coleman, Appl. Catal. B, 39, 65-74 (2002).

    Article  CAS  Google Scholar 

  13. S. Sean, Y. Lin, D. H. Kim, and S. Y. Ha, Appl. Catal. A, 355, 69-77 (2009).

    Article  Google Scholar 

  14. D. K. Liguras, D. I. Kandarides, and X. E. Verykios, Appl. Catal. B, 43, 345-354 (2003).

    Article  CAS  Google Scholar 

  15. D. K. Liguras, K. Goundani, and X. E. Verykios, Int. J. Hydrogen Energ., 29, 419-427 (2004).

    Article  CAS  Google Scholar 

  16. A. Casanovas, J. Llorca, N. Homs, et al., J. Mol. Catal. A, 250, 44-49 (2006).

    Article  CAS  Google Scholar 

  17. L. V. Mattos, G. Jacobs, B. H. Davis, and F. B. Noronha, Chem. Rev., 112, 4094-4123 (2012).

    Article  CAS  Google Scholar 

  18. D. Zanchet, J. B. O. Santos, S. Damyanova, et al., ACS Catalysis, 5, 3841-3863 (2015).

    Article  CAS  Google Scholar 

  19. P. Serp, M. Corrias, and P. Kalck, Appl. Catal. A, 253, 337-358 (2003).

    Article  CAS  Google Scholar 

  20. G. G. Wildgoose, C. E. Banks, and R. G. Compton, Small, 2, 182-193 (2006).

    Article  CAS  Google Scholar 

  21. P. K. Seelam, M. Huuhtanen, A. Sapi, et al., Int. J. Hydrogen Energ., 35, 12588-12595 (2010).

    Article  CAS  Google Scholar 

  22. N. Prasongthum, R. Xiao, H. Zhang, et al., Fuel Process. Technol., 160, 185-195 (2017).

    Article  CAS  Google Scholar 

  23. B. L. Augusto, M. C. Ribeiro, F. J. C. S. Aires, et al., Catal. Today, 344, 66-74 (2020).

    Article  CAS  Google Scholar 

  24. I. B. Bychko, E. Yu. Kalishin, and P. E. Strizhak, Theor. Exp. Chem., 47, No. 4, 219-224 (2011).

    Article  CAS  Google Scholar 

  25. A. I. Tripol’skii, N. V. Lemesh, V. A. Khavrus’, and P. E. Strizhak, Theor. Exp. Chem., 44, No. 4, 240-244.

  26. L. Yu. Dolgikh, I. L. Stolyarchuk, L. A. Staraya, et al., Theor. Exp. Chem., 50, No. 4, 245-249 (2014).

    Article  Google Scholar 

  27. E. Yu. Kalishin, I. B. Bychko, A. I. Tripol’skii, and P. E. Strizhak, Theor. Exp. Chem., 53, No. 3, 199-203 (2017).

    Article  Google Scholar 

  28. I. Charkendorff and W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, Wiley-VCH, Weinheim (2003).

    Book  Google Scholar 

Download references

The work was carried out with partial financial support from a targeted program of scientific investigations of the National Academy of Sciences of Ukraine “Development of scientific bases for hydrogen production, storage, and use in autonomous energy supply systems.” The authors express their gratitude to I. B. Bychko for providing samples of catalysts based on carbon nanotubes and to E. M. Moroz (G. K. Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences) for the X-ray investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Dolgikh.

Additional information

Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 56, No. 3, pp. 181-186, May-June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgikh, L.Y., Staraya, L.O., Stolyarchuk, I.L. et al. Low-Temperature Steam Reforming of Ethanol Over Iron Catalysts on Oxide and Carbon Supports. Theor Exp Chem 56, 192–198 (2020). https://doi.org/10.1007/s11237-020-09651-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09651-5

Key words

Navigation