Skip to main content
Log in

Fine-tuning HOMO energy levels between PM6 and PBDB-T polymer donors via ternary copolymerization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

To achieve high-efficiency polymer solar cells (PSCs), it is not only important to develop high-performance small molecule acceptors (SMAs) but also to find a matching polymer donor to achieve optimal morphology and matching electronic properties. Currently, state-of-the-art SMAs mostly rely on a donor polymer named PM6. However, as the family of SMAs continues to expend, PM6 may not be the perfect polymer donor due to the requirement of energy level matching. In this work, we tune the energy level of PM6via the strategy of ternary copolymerization. We achieve two donor polymers (named PL-1 and PL-2) with upshifted HOMO (the highest occupied molecular orbital) energy level (compared with PM6), and can thus match with the SMAs with upshifted HOMO energy levels compared with Y6. These two copolymers exhibit slightly higher order of molecular packing and similar charge transport properties, which demonstrate that the method of ternary copolymerization can fine tune the HOMO level of donor polymers, while the morphology and mobility of the blend film remain mostly unaffected. Among them, the best device based on PL-1: Y6 exhibits power conversion efficiencies (PCEs) of 16.37% with lower open circuit voltage (Voc) but higher short circuit current voltage (Jsc) and fill factor (FF) than that of the device based on PM6: Y6. This work provides an effective approach to find polymer matches for the SMAs with upshifted HOMO levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Traverse CJ, Pandey R, Barr MC, Lunt RR. Nat Energy, 2017, 2: 849–860

    Google Scholar 

  2. Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC. Mater Today, 2012, 15: 36–49

    Google Scholar 

  3. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    CAS  PubMed  Google Scholar 

  4. Song W, Fanady B, Peng R, Hong L, Wu L, Zhang W, Yan T, Wu T, Chen S, Ge Z. Adv Energy Mater, 2020, 10: 2000136

    CAS  Google Scholar 

  5. Li Z, Jiang K, Yang G, Lai JYL, Ma T, Zhao J, Ma W, Yan H. Nat Commun, 2016, 7: 13094

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu X, Li Z, Bi Z, Yu T, Ma W, Feng K, Li Y, Peng Q. Adv Mater, 2018, 30: 1800737

    Google Scholar 

  7. Guo B, Li W, Guo X, Meng X, Ma W, Zhang M, Li Y. Adv Mater, 2017, 29: 1702291

    Google Scholar 

  8. Fan B, Zhang K, Jiang XF, Ying L, Huang F, Cao Y. Adv Mater, 2017, 29: 1606396

    Google Scholar 

  9. Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363–369

    CAS  PubMed  Google Scholar 

  10. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    CAS  PubMed  Google Scholar 

  11. Li X, Pan F, Sun C, Zhang M, Wang Z, Du J, Wang J, Xiao M, Xue L, Zhang ZG, Zhang C, Liu F, Li Y. Nat Commun, 2019, 10: 519

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bredas JL. Mater Horiz, 2014, 1: 17–19

    CAS  Google Scholar 

  13. Holcombe TW, Norton JE, Rivnay J, Woo CH, Goris L, Piliego C, Griffini G, Sellinger A, Bredas JL, Salleo A, Frechet JMJ. J Am Chem Soc, 2011, 133: 12106–12114

    CAS  PubMed  Google Scholar 

  14. Elumalai NK, Uddin A. Energy Environ Sci, 2016, 9: 391–410

    CAS  Google Scholar 

  15. Clarke TM, Durrant JR. Chem Rev, 2010, 110: 6736–6767

    CAS  PubMed  Google Scholar 

  16. Hendriks KH, Wijpkema ASG, van Franeker JJ, Wienk MM, Janssen RAJ. J Am Chem Soc, 2016, 138: 10026–10031

    CAS  PubMed  Google Scholar 

  17. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat Photon, 2012, 6: 591–595

    Google Scholar 

  18. Zhou K, Wu Y, Liu Y, Zhou X, Zhang L, Ma W. ACS Energy Lett, 2019, 4: 1057–1064

    CAS  Google Scholar 

  19. Sun C, Wu Z, Hu Z, Xiao J, Zhao W, Li HW, Li QY, Tsang SW, Xu YX, Zhang K, Yip HL, Hou J, Huang F, Cao Y. Energy Environ Sci, 2017, 10: 1784–1791

    CAS  Google Scholar 

  20. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    CAS  Google Scholar 

  21. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    PubMed  PubMed Central  Google Scholar 

  22. Luo Z, Sun R, Zhong C, Liu T, Zhang G, Zou Y, Jiao X, Min J, Yang C. Sci China Chem, 2020, 63: 361–369

    CAS  Google Scholar 

  23. Sun C, Qin S, Wang R, Chen S, Pan F, Qiu B, Shang Z, Meng L, Zhang C, Xiao M, Yang C, Li Y. J Am Chem Soc, 2020, 142: 1465–1474

    CAS  PubMed  Google Scholar 

  24. Zhu L, Zhang M, Zhou G, Hao T, Xu J, Wang J, Qiu C, Prine N, Ali J, Feng W, Gu X, Ma Z, Tang Z, Zhu H, Ying L, Zhang Y, Liu F. Adv Energy Mater, 2020, 10: 1904234

    CAS  Google Scholar 

  25. Zhou Z, Liu W, Zhou G, Zhang M, Qian D, Zhang J, Chen S, Xu S, Yang C, Gao F, Zhu H, Liu F, Zhu X. Adv Mater, 2020, 32: 1906324

    CAS  Google Scholar 

  26. Luo Z, Ma R, Liu T, Yu J, Xiao Y, Sun R, Xie G, Yuan J, Chen Y, Chen K, Chai G, Sun H, Min J, Zhang J, Zou Y, Yang C, Lu X, Gao F, Yan H. Joule, 2020, 4: 1236–1247

    CAS  Google Scholar 

  27. Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H. Sci China Chem, 2020, 63: 325–330

    CAS  Google Scholar 

  28. Liu T, Ma R, Luo Z, Guo Y, Zhang G, Xiao Y, Yang T, Chen Y, Li G, Yi Y, Lu X, Yan H, Tang B. Energy Environ Sci, 2020, doi: https://doi.org/10.1039/D0EE00662A

  29. Liu T, Zhang Y, Shao Y, Ma R, Luo Z, Xiao Y, Yang T, Lu X, Yuan Z, Yan H, Chen Y, Li Y. Adv Funct Mater, 2020, 30: 2000456

    CAS  Google Scholar 

  30. Gao B, Yao H, Hong L, Hou J. Chin J Chem, 2019, 37: 1153–1157

    CAS  Google Scholar 

  31. Bin H, Zhang ZG, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 4657–4664

    CAS  PubMed  Google Scholar 

  32. Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun, 2016, 7: 13651

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537

    CAS  Google Scholar 

  34. Li X, Huang H, Bin H, Peng Z, Zhu C, Xue L, Zhang ZG, Zhang Z, Ade H, Li Y. Chem Mater, 2017, 29: 10130–10138

    CAS  Google Scholar 

  35. Zhan L, Li S, Lau TK, Cui Y, Lu X, Shi M, Li CZ, Li H, Hou J, Chen H. Energy Environ Sci, 2020, 13: 635–645

    CAS  Google Scholar 

  36. Wang R, Yuan J, Wang R, Han G, Huang T, Huang W, Xue J, Wang HC, Zhang C, Zhu C, Cheng P, Meng D, Yi Y, Wei KH, Zou Y, Yang Y. Adv Mater, 2019, 31: 1904215

    CAS  Google Scholar 

  37. Luo M, Zhao C, Yuan J, Hai J, Cai F, Hu Y, Peng H, Bai Y, Tan Z, Zou Y. Mater Chem Front, 2019, 3: 2483–2490

    CAS  Google Scholar 

  38. Cui Y, Yao H, Hong L, Zhang T, Xu Y, Xian K, Gao B, Qin J, Zhang J, Wei Z, Hou J. Adv Mater, 2019, 31: 1808356

    Google Scholar 

  39. Wang T, Sun R, Shi M, Pan F, Hu Z, Huang F, Li Y, Min J. Adv Energy Mater, 2020, 10: 2000590

    CAS  Google Scholar 

  40. Sun H, Liu T, Yu J, Lau TK, Zhang G, Zhang Y, Su M, Tang Y, Ma R, Liu B, Liang J, Feng K, Lu X, Guo X, Gao F, Yan H. Energy Environ Sci, 2019, 12: 3328–3337

    CAS  Google Scholar 

  41. Li Z, Xu X, Zhang W, Meng X, Ma W, Yartsev A, Inganäs O, Andersson MR, Janssen RAJ, Wang E. J Am Chem Soc, 2016, 138: 10935–10944

    CAS  PubMed  Google Scholar 

  42. Hoang MH, Park GE, Choi S, Park CG, Park SH, Nguyen TV, Kim S, Kwak K, Cho MJ, Choi DH. J Mater Chem C, 2019, 7: 111–118

    CAS  Google Scholar 

  43. Wang Q, Zhang S, Xu B, Li S, Yang B, Yuan W, Hou J. J Phys Chem C, 2017, 121: 4825–4833

    CAS  Google Scholar 

  44. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Shenzhen Technology and Innovation Commission (JCYJ20170413173814007, JCYJ20170818113905024), the Hong Kong Research Grants Council (Research Impact Fund R6021-18) (16305915, 16322416, 606012, 16303917), Hong Kong Innovation and Technology Commission (ITC-CNERC14SC01, ITS/471/18), and the National Natural Science Foundation of China (51573120, 51973146, 51820105003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Liu, Xinhui Lu, He Yan or Yongfang Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, R., Liu, T. et al. Fine-tuning HOMO energy levels between PM6 and PBDB-T polymer donors via ternary copolymerization. Sci. China Chem. 63, 1256–1261 (2020). https://doi.org/10.1007/s11426-020-9805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9805-7

Keywords

Navigation