Skip to main content
Log in

Visible-light-induced regioselective cross-dehydrogenative coupling of 2-isothiocyanatonaphthalenes with amines using molecular oxygen

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An efficient and eco-friendly protocol for the construction of naphtho[2,1-d]thiazol-2-amines through visible-light photoredoxcatalyzed C(sp2)-H/S-H cross-dehydrogenative coupling reactions between 2-isothiocyanatonaphthalenes and amines was established. In this reaction, the new C-N and C-S bonds are formed simultaneously in a single step. This new method provides a straightforward approach for constructing valuable sulfur-containing compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li NS, Frederiksen JK, Piccirilli JA. Acc Chem Res, 2011, 44: 1257–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haruki H, Pedersen MG, Gorska KI, Pojer F, Johnsson K. Science, 2013, 340: 987–991

    Article  CAS  PubMed  Google Scholar 

  3. Shen C, Zhang P, Sun Q, Bai S, Hor TSA, Liu X. Chem Soc Rev, 2015, 44: 291–314

    Article  CAS  PubMed  Google Scholar 

  4. Xie LY, Peng S, Tan JX, Sun RX, Yu X, Dai NN, Tang ZL, Xu X, He WM. ACS Sustain Chem Eng, 2018, 6: 16976–16981

    Article  CAS  Google Scholar 

  5. Chai L, Lai Z, Xia Q, Yuan J, Bian Q, Yu M, Zhang W, Xu Y, Xu H. Eur J Org Chem, 2018, 31: 4338–4344

    Article  CAS  Google Scholar 

  6. Gong X, Li G, Gan Z, Yan Q, Dou X, Yang D. Asian J Org Chem, 2019, 8: 1472–1478

    Article  CAS  Google Scholar 

  7. Ilardi EA, Vitaku E, Njardarson JT. J Med Chem, 2014, 57: 2832–2842

    Article  CAS  PubMed  Google Scholar 

  8. Hartwig JF. Acc Chem Res, 2008, 41: 1534–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beletskaya IP, Ananikov VP. Chem Rev, 2011, 111: 1596–1636

    Article  CAS  PubMed  Google Scholar 

  10. For selected examples, see: (a) Kondo T, Mitsudo T. Chem Rev, 2000, 100: 3205–3220

    Article  CAS  PubMed  Google Scholar 

  11. Kwong FY, Buchwald SL. Org Lett, 2002, 4: 3517–3520

    Article  CAS  PubMed  Google Scholar 

  12. Bates CG, Saejueng P, Doherty MQ, Venkataraman D. Org Lett, 2004, 6: 5005–5008

    Article  CAS  PubMed  Google Scholar 

  13. Ma D, Cai Q. Acc Chem Res, 2008, 41: 1450–1460

    Article  CAS  PubMed  Google Scholar 

  14. Huang CY, Kang H, Li J, Li CJ. J Org Chem, 2019, 84: 12705–12721

    Article  CAS  PubMed  Google Scholar 

  15. Li CJ. Acc Chem Res, 2009, 42: 335–344

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Schlecht S, Semple TC, Hartwig JF. Science, 2000, 287: 1995–1997

    Article  CAS  PubMed  Google Scholar 

  17. Yeung CS, Dong VM. Chem Rev, 2011, 111: 1215–1292

    Article  CAS  PubMed  Google Scholar 

  18. Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem Rev, 2015, 115: 12138–12204

    Article  CAS  PubMed  Google Scholar 

  19. Louillat ML, Patureau FW. Chem Soc Rev, 2014, 43: 901–910

    Article  CAS  PubMed  Google Scholar 

  20. Krylov IB, Vil’ VA, Terent’ev AO. Beilstein J Org Chem, 2015, 11: 92–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gensch T, Klauck FJR, Glorius F. Angew Chem Int Ed, 2016, 55: 11287–11291

    Article  CAS  Google Scholar 

  22. Shen C, Zhang P, Sun Q, Bai S, Hor TSA, Liu X. Chem Soc Rev, 2015, 44: 291–314

    Article  CAS  PubMed  Google Scholar 

  23. Chikhale R, Menghani S, Babu R, Bansode R, Bhargavi G, Karodia N, Rajasekharan MV, Paradkar A, Khedekar P. Eur J Medicinal Chem, 2015, 96: 30–46

    Article  CAS  Google Scholar 

  24. Fajkusova D, Pesko M, Keltosova S, Guo J, Oktabec Z, Vejsova M, Kollar P, Coffey A, Csollei J, Kralova K, Jampilek J. Bioorg Med Chem, 2012, 20: 7059–7068

    Article  CAS  PubMed  Google Scholar 

  25. Glennon RA, Gaines JJ, Rogers ME. J Med Chem, 1981, 24: 766–769

    Article  CAS  PubMed  Google Scholar 

  26. Gomaa MS, Armstrong JL, Bobillon B, Veal GJ, Brancale A, Redfern CPF, Simons C. Bioorg Med Chem, 2008, 16: 8301–8313

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh AK, Rao KV, Nyalapatla PR, Osswald HL, Martyr CD, Aoki M, Hayashi H, Agniswamy J, Wang YF, Bulut H, Das D, Weber IT, Mitsuya H. J Med Chem, 2017, 60: 4267–4278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gurupadyya B, Gopal M, Padmashali B, Manohara Y. Ind J Pharm Sci, 2008, 70: 572–577

    Article  Google Scholar 

  29. Ma D, Lu X, Shi L, Zhang H, Jiang Y, Liu X. Angew Chem Int Ed, 2011, 50: 1118–1121

    Article  CAS  Google Scholar 

  30. Bian Q, Wu C, Yuan J, Shi Z, Ding T, Huang Y, Xu H, Xu Y. J Org Chem, 2020, 85: 4058–4066

    Article  CAS  PubMed  Google Scholar 

  31. Massari S, Daelemans D, Barreca ML, Knezevich A, Sabatini S, Cecchetti V, Marcello A, Pannecouque C, Tabarrini O. J Med Chem, 2010, 53: 641–648

    Article  CAS  PubMed  Google Scholar 

  32. Cho SH, Kim JY, Lee SY, Chang S. Angew Chem Int Ed, 2009, 48: 9127–9130

    Article  CAS  Google Scholar 

  33. Monguchi D, Fujiwara T, Furukawa H, Mori A. Org Lett, 2009, 11: 1607–1610

    Article  CAS  PubMed  Google Scholar 

  34. Kim JY, Cho SH, Joseph J, Chang S. Angew Chem Int Ed, 2010, 49: 9899–9903

    Article  CAS  Google Scholar 

  35. Stewart GW, Baxter CA, Cleator E, Sheen FJ. J Org Chem, 2009, 74: 3229–3231

    Article  CAS  PubMed  Google Scholar 

  36. Toulot S, Heinrich T, Leroux FR. Adv Synth Catal, 2013, 355: 3263–3272

    Article  CAS  Google Scholar 

  37. Ding Q, Cao B, Liu X, Zong Z, Peng YY. Green Chem, 2010, 12: 1607–1610

    Article  CAS  Google Scholar 

  38. Zhao N, Liu L, Wang F, Li J, Zhang W. Adv Synth Catal, 2014, 356: 2575–2579

    Article  CAS  Google Scholar 

  39. Sun YL, Zhang Y, Cui XH, Wang W. Adv Synth Catal, 2011, 353: 1174–1178

    Article  CAS  Google Scholar 

  40. Ding Q, He X, Wu J. J Comb Chem, 2009, 11: 587–591

    Article  CAS  PubMed  Google Scholar 

  41. Joyce LL, Batey RA. Org Lett, 2009, 11: 2792–2795

    Article  CAS  PubMed  Google Scholar 

  42. Inamoto K, Hasegawa C, Kawasaki J, Hiroya K, Doi T. Adv Synth Catal, 2010, 352: 2643–2655

    Article  CAS  Google Scholar 

  43. Sharma S, Pathare RS, Maurya AK, Gopal K, Roy TK, Sawant DM, Pardasani RT. Org Lett, 2016, 18: 356–359

    Article  CAS  PubMed  Google Scholar 

  44. Wang P, Tang S, Lei A. Green Chem, 2017, 19: 2092–2095

    Article  CAS  Google Scholar 

  45. Xu Y, Li B, Zhang X, Fan X. J Org Chem, 2017, 82: 9637–9646

    Article  CAS  PubMed  Google Scholar 

  46. For selected examples, see: (a) Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li L, Fan S, Mu X, Mi Z, Li CJ. J Am Chem Soc, 2014, 136: 7793–7796

    Article  CAS  PubMed  Google Scholar 

  48. Mfuh AM, Doyle JD, Chhetri B, Arman HD, Larionov OV. J Am Chem Soc, 2016, 138: 2985–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li L, Mu X, Liu W, Wang Y, Mi Z, Li CJ. J Am Chem Soc, 2016, 138: 5809–5812

    Article  CAS  PubMed  Google Scholar 

  50. Chen JR, Hu XQ, Lu LQ, Xiao WJ. Acc Chem Res, 2016, 49: 1911–1923

    Article  CAS  PubMed  Google Scholar 

  51. Tan Y, Muñoz-Molina JM, Fu GC, Peters JC. Chem Sci, 2014, 5: 2831–2835

    Article  CAS  Google Scholar 

  52. Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. Chem Commun, 2019, 55: 5408–5419

    Article  CAS  Google Scholar 

  53. Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DWC. Nature, 2015, 524: 330–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166

    Article  CAS  PubMed  Google Scholar 

  55. Xie LY, Fang TG, Tan JX, Zhang B, Cao Z, Yang LH, He WM. Green Chem, 2019, 21: 3858–3863

    Article  CAS  Google Scholar 

  56. Li L, Liu W, Zeng H, Mu X, Cosa G, Mi Z, Li CJ. JAm Chem Soc, 2015, 137: 8328–8331

    Article  CAS  Google Scholar 

  57. Jiang M, Li H, Yang H, Fu H. Angew Chem Int Ed, 2017, 56: 874–879

    Article  CAS  Google Scholar 

  58. Xie LY, Hu JL, Song YX, Jia GK, Lin YW, He JY, Cao Z, He WM. ACS Sustain Chem Eng, 2019, 7: 19993–19999

    Article  CAS  Google Scholar 

  59. Liu S, Pan W, Wu S, Bu X, Xin S, Yu J, Xu H, Yang X. Green Chem, 2019, 21: 2905–2910

    Article  CAS  Google Scholar 

  60. Tian M, Liu S, Bu X, Yu J, Yang X. Chem Eur J, 2020, 26: 369–373

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y, Chen XL, Sun K, Li XY, Zeng FL, Liu XC, Qu LB, Zhao YF, Yu B. Org Lett, 2019, 21: 4019–4024

    Article  CAS  PubMed  Google Scholar 

  62. Kibriya G, Ghosh D, Hajra A. Sci China Chem, 2020, 63: 42–46

    Article  CAS  Google Scholar 

  63. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    Article  CAS  Google Scholar 

  64. Liu M, Li Y, Yu L, Xu Q, Jiang X. Sci China Chem, 2018, 61: 294–299

    Article  CAS  Google Scholar 

  65. Miao M, Liao LL, Cao GM, Zhou WJ, Yu DG. Sci China Chem, 2019, 62: 1519–1524

    Article  CAS  Google Scholar 

  66. Teng QH, Yao Y, Wei WX, Tang HT, Li JR, Pan YM. Green Chem, 2018, 20: 141–147

    Article  Google Scholar 

  67. Rathore V, Kumar S. Green Chem, 2019, 21: 2670–2676

    Article  CAS  Google Scholar 

  68. Rahaman R, Das S, Barman P. Green Chem, 2018, 20: 141–147

    Article  CAS  Google Scholar 

  69. Xie LY, Chen YL, Qin L, Wen Y, Xie JW, Tan JX, Huang Y, Cao Z, He WM. Org Chem Front, 2019, 6: 3950–3955

    Article  CAS  Google Scholar 

  70. Dong DQ, Li LX, Li GH, Deng Q, Wang ZL, Long S. Chin J Catal, 2019, 40: 1494–1498

    Article  CAS  Google Scholar 

  71. Li G, Yan Q, Gan Z, Li Q, Dou X, Yang D. Org Lett, 2019, 21: 7938–7942

    Article  CAS  PubMed  Google Scholar 

  72. Li G, Yan Q, Gong X, Dou X, Yang D. ACS Sustain Chem Eng, 2019, 7: 14009–14015

    Article  CAS  Google Scholar 

  73. Yang D, Li G, Xing C, Cui W, Li K, Wei W. Org Chem Front, 2018, 5: 2974–2979

    Article  CAS  Google Scholar 

  74. Yang D, Huang B, Wei W, Li J, Lin G, Liu Y, Ding J, Sun P, Wang H. Green Chem, 2016, 18: 5630–5634

    Article  CAS  Google Scholar 

  75. Sun P, Yang D, Wei W, Jiang M, Wang Z, Zhang L, Zhang H, Zhang Z, Wang Y, Wang H. Green Chem, 2017, 19: 4785–4791

    Article  CAS  Google Scholar 

  76. Gan Z, Li G, Yan Q, Deng W, Jiang YY, Yang D. Green Chem, 2020, 22: 2956–2962

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21302110, 21702119), the Natural Science Foundation of Shandong Province (ZR2016JL012, ZR2017QB001), the Scientific Research Foundation of Qingdao University of Science and Technology, the Natural Science Foundation of Liaoning Province (20180550882) and the Program for Creative Talents in University of Liaoning Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Ye Jiang or Daoshan Yang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Z., Li, G., Yang, X. et al. Visible-light-induced regioselective cross-dehydrogenative coupling of 2-isothiocyanatonaphthalenes with amines using molecular oxygen. Sci. China Chem. 63, 1652–1658 (2020). https://doi.org/10.1007/s11426-020-9811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9811-6

Keywords

Navigation