Skip to main content
Log in

P2X3 receptors contribute to transition from acute to chronic muscle pain

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

This study aimed to evaluate whether the development and/or maintenance of chronic-latent muscle hyperalgesia is modulated by P2X3 receptors. We also evaluate the expression of P2X3 receptors and PKCε of dorsal root ganglions during these processes. A mouse model of chronic-latent muscle hyperalgesia, induced by carrageenan and evidenced by PGE2, was used. Mechanical muscle hyperalgesia was measured by Randall-Selitto analgesimeter. The involvement of P2X3 receptors was analyzed by using the selective P2X3 receptors antagonist A-317491 by intramuscular or intrathecal injections. Expression of P2X3 and PKCε in dorsal root ganglion (L4-S1) were evaluated by Western blotting. Intrathecal blockade of P2X3 receptors previously to carrageenan prevented the development and maintenance of acute and chronic-latent muscle hyperalgesia, while intramuscular blockade of P2X3 receptors previously to carrageenan only reduced the acute muscle hyperalgesia and had no effect on chronic-latent muscle hyperalgesia. Intrathecal, but not intramuscular, blockade of P2X3 receptors immediately before PGE2, in animals previously sensitized by carrageenan, reversed the chronic-latent muscle hyperalgesia. There was an increase in total and phosphorylated PKCε 48 h after the beginning of acute muscle hyperalgesia, and in P2X3 receptors at the period of chronic muscle hyperalgesia. P2X3 receptors expressed on spinal cord dorsal horn contribute to transition from acute to chronic muscle pain. We also suggest an interaction of PKCε and P2X3 receptors in this process. Therefore, we point out P2X3 receptors of the spinal cord dorsal horn as a pharmacological target to prevent the development or reverse the chronic muscle pain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gregory NS, Gibson-Corley K, Frey-Law L, Sluka KA (2013) Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner. Pain 154:2668–2676. https://doi.org/10.1016/j.pain.2013.07.047

    Article  PubMed  PubMed Central  Google Scholar 

  2. Henschke N, Kamper SJ, Maher CG (2015) The epidemiology and economic consequences of pain. Mayo Clin Proc 90:139–147. https://doi.org/10.1016/j.mayocp.2014.09.010

    Article  PubMed  Google Scholar 

  3. Dommerholt J, Hooks T, Chou LW, Finnegan M (2019) A critical overview of the current myofascial pain literature–November 2018. J Bodyw Mov Ther 23:65–73. https://doi.org/10.1016/j.jbmt.2018.11.002

    Article  PubMed  Google Scholar 

  4. Coggon D, Ntani G, Palmer KT, Felli VE, Harari R, Barrero LH, Felknor SA, Gimeno D, Cattrell A, Serra C, Bonzini M, Solidaki E, Merisalu E, Habib RR, Sadeghian F, Masood Kadir M, Warnakulasuriya SSP, Matsudaira K, Nyantumbu B, Sim MR, Harcombe H, Cox K, Marziale MH, Sarquis LM, Harari F, Freire R, Harari N, Monroy MV, Quintana LA, Rojas M, Salazar Vega EJ, Harris CE, Vargas-Prada S, Martinez MJ, Delclos G, Benavides FG, Carugno M, Ferrario MM, Pesatori AC, Chatzi L, Bitsios P, Kogevinas M, Oha K, Sirk T, Sadeghian A, Peiris-John RJ, Sathiakumar N, Wickremasinghe RA, Yoshimura N, Kelsall HL, Hoe VCW, Urquhart DM, Derrett S, McBride D, Herbison P, Gray A (2013) Disabling musculoskeletal pain in working populations: is it the job, the person, or the culture? Pain 154:856–863. https://doi.org/10.1016/j.pain.2013.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cimmino MA, Ferrone C, Cutolo M (2011) Epidemiology of chronic musculoskeletal pain. Best Pract Res Clin Rheumatol 25:173–183. https://doi.org/10.1016/j.berh.2010.01.012

    Article  PubMed  Google Scholar 

  6. Lesnak J, Sluka KA (2019) Chronic non-inflammatory muscle pain: central and peripheral mediators. Curr Opin Physiol 11:67–74. https://doi.org/10.1016/j.cophys.2019.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kuner R, Flor H (2016) Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci 18:20–30. https://doi.org/10.1038/nrn.2016.162

    Article  CAS  PubMed  Google Scholar 

  8. Dina OA, Levine JD, Green PG (2008) Muscle inflammation induces a protein kinase Cε-dependent chronic-latent muscle pain. J Pain 9:457–462. https://doi.org/10.1016/j.jpain.2008.01.328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parada CA, Yeh JJ, Reichling DB, Levine JD (2003) Transient attenuation of protein kinase Cε can terminate a chronic hyperalgesic state in the rat. Neuroscience 120:219–226. https://doi.org/10.1016/S0306-4522(03)00267-7

    Article  CAS  PubMed  Google Scholar 

  10. Ferrari LF, Bogen O, Levine JD (2013) Role of nociceptor αCaMKII in transition from acute to chronic pain (hyperalgesic priming) in male and female rats. J Neurosci 33:11002–11011. https://doi.org/10.1523/JNEUROSCI.1785-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen W-N, Lee C-H, Lin S-H, Wong CW, Sun WH, Wood JN, Chen CC (2014) Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia. Mol Pain 10:40. https://doi.org/10.1186/1744-8069-10-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferrari LF, Araldi D, Levine JD (2015) Distinct terminal and cell body mechanisms in the nociceptor mediate hyperalgesic priming. J Neurosci 35:6107–6116. https://doi.org/10.1523/JNEUROSCI.5085-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang WY, Dai SP, Chang YC, Sun WH (2015) Acidosis mediates the switching of G<inf>s</inf>-PKA and G<inf>i</inf>-PKC<inf>ε</inf> dependence in prolonged hyperalgesia induced by inflammation. PLoS One 10:1–17. https://doi.org/10.1371/journal.pone.0125022

    Article  CAS  Google Scholar 

  14. de Melo AB, da Silva Dos Santos DF, Jorge CO et al (2019) P2X3 receptors contribute to muscle pain induced by static contraction by a mechanism dependent on neutrophil migration. Purinergic Signal 15:167–175. https://doi.org/10.1007/s11302-019-09659-0

    Article  CAS  Google Scholar 

  15. Schiavuzzo JG, Teixeira JM, Melo B, da Silva dos Santos DF, Jorge CO, Oliveira-Fusaro MCG, Parada CA (2015) Muscle hyperalgesia induced by peripheral P2X3 receptors is modulated by inflammatory mediators. Neuroscience 285:24–33. https://doi.org/10.1016/j.neuroscience.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  16. Gu Y, Wang C, Li GW, Huang LYM (2016) F-actin links Epac-PKC signaling to purinergic P2X3 receptor sensitization in dorsal root ganglia following inflammation. Mol Pain 12:1–11. https://doi.org/10.1177/1744806916660557

    Article  CAS  Google Scholar 

  17. Zhou Y-F, Ying X-M, He X-F, Shou SY, Wei JJ, Tai ZX, Shao XM, Liang Y, Fang F, Fang JQ, Jiang YL (2018) Suppressing PKC-dependent membrane P2X3 receptor upregulation in dorsal root ganglia mediated electroacupuncture analgesia in rat painful diabetic neuropathy. Purinergic Signal 14:359–369. https://doi.org/10.1007/s11302-018-9617-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oliveira-Fusaro MCG, Zanoni CIS, Dos Santos GG, Manzo LP, Araldi D, Bonet IJM, Tambeli CH, Dias EV, Parada CA (2017) Antihyperalgesic effect of CB1 receptor activation involves the modulation of P2X3 receptor in the primary afferent neuron. Eur J Pharmacol. 5;798:113–121. https://doi.org/10.1016/j.ejphar.2017.01.030

  19. Teixeira JM, Bobinski F, Parada CA, Sluka KA, Tambeli CH (2017) P2X3 and P2X2/3 Receptors Play a Crucial Role in Articular Hyperalgesia Development Through Inflammatory Mechanisms in the Knee Joint Experimental Synovitis. Mol Neurobiol. 54(8):6174–6186. https://doi.org/10.1007/s12035-016-0146-2

  20. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110. https://doi.org/10.1016/0304-3959(83)90201-4

    Article  CAS  PubMed  Google Scholar 

  21. Rosland JH (1991) The formalin test in mice: the influence of ambient temperature. Pain 45:211–216. https://doi.org/10.1016/0304-3959(91)90190-9

    Article  CAS  PubMed  Google Scholar 

  22. Manjavachi MN, Motta EM, Marotta DM, Leite DFP, Calixto JB (2010) Mechanisms involved in IL-6-induced muscular mechanical hyperalgesia in mice. Pain 151:345–355. https://doi.org/10.1016/j.pain.2010.07.018

    Article  CAS  PubMed  Google Scholar 

  23. Huang H, Zhang Z, Huang D (2019) Decreased HCN2 channel expression attenuates neuropathic pain by inhibiting pro-inflammatory reactions and NF-κB activation in mice. Int J Clin Exp Pathol 12:154–163

    PubMed  PubMed Central  Google Scholar 

  24. Oliveira MCG, Pelegrini-da-Silva A, Tambeli CH, Parada CA (2009) Peripheral mechanisms underlying the essential role of P2X3,2/3 receptors in the development of inflammatory hyperalgesia. Pain 141:127–134. https://doi.org/10.1016/j.pain.2008.10.024

    Article  CAS  PubMed  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  26. de Azambuja G, Botasso Gomes B, Messias LHD, Aquino BM, Jorge CO, Manchado-Gobatto FB, Oliveira-Fusaro MCG (2020) Swimming physical training prevented the onset of acute muscle pain by a mechanism dependent of PPARγ receptors and CINC-1. Neuroscience 427:64–74. https://doi.org/10.1016/j.neuroscience.2019.12.017

    Article  CAS  PubMed  Google Scholar 

  27. Santos DF d S d, Melo Aquino B d, Jorge CO et al (2017) Muscle pain induced by static contraction in rats is modulated by peripheral inflammatory mechanisms. Neuroscience 358:58–69. https://doi.org/10.1016/j.neuroscience.2017.06.041

    Article  CAS  PubMed  Google Scholar 

  28. Cunha TM, Verri WA, Schivo IR, Napimoga MH, Parada CA, Poole S, Teixeira MM, Ferreira SH, Cunha FQ (2008) Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol 83:824–832. https://doi.org/10.1189/jlb.0907654

    Article  CAS  PubMed  Google Scholar 

  29. Burnstock G (2016) Purinergic mechanisms and pain, 1st edn. Elsevier Inc.

  30. Burnstock G, Wood JN (1996) Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol 6:526–532. https://doi.org/10.1016/S0959-4388(96)80060-2

    Article  CAS  PubMed  Google Scholar 

  31. Bernier L-P, Ase AR, Séguéla P (2018) P2X receptor channels in chronic pain pathways. Br J Pharmacol 175:2219–2230. https://doi.org/10.1111/bph.13957

    Article  CAS  PubMed  Google Scholar 

  32. Tsuzuki K, Kondo E, Fukuoka T, Yi D, Tsujino H, Sakagami M, Noguchi K (2001) Differential regulation of P2X(3) mRNA expression by peripheral nerve injury in intact and injured neurons in the rat sensory ganglia. Pain 91:351–360. https://doi.org/10.1016/S0304-3959(00)00456-5

    Article  CAS  PubMed  Google Scholar 

  33. Shieh C-C, Jarvis MF, Lee C-H, Perner RJ (2006) P2X receptor ligands and pain. Expert Opin Ther Pat 16:1113–1127. https://doi.org/10.1517/13543776.16.8.1113

    Article  CAS  PubMed  Google Scholar 

  34. Masuda T, Ozono Y, Mikuriya S, Kohro Y, Tozaki-Saitoh H, Iwatsuki K, Uneyama H, Ichikawa R, Salter MW, Tsuda M, Inoue K (2016) Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat Commun 7:12529. https://doi.org/10.1038/ncomms12529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodrigues RJ (2005) Dual presynaptic control by ATP of glutamate release via Facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286–6295. https://doi.org/10.1523/JNEUROSCI.0628-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ford AP (2012) In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. Purinergic Signal 8:3–26. https://doi.org/10.1007/s11302-011-9271-6

    Article  CAS  PubMed  Google Scholar 

  37. Dunn PM, Zhong Y, Burnstock G (2001) P2X receptors in peripheral neurons. Prog Neurobiol 65:107–134. https://doi.org/10.1016/S0301-0082(01)00005-3

    Article  CAS  PubMed  Google Scholar 

  38. Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12:256–268. https://doi.org/10.1006/mcne.1998.0719

    Article  CAS  PubMed  Google Scholar 

  39. Wang C, Gu Y, Li G-W, Huang L-YM (2007) A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats. J Physiol 584:191–203. https://doi.org/10.1113/jphysiol.2007.135616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gu Y, Li G, Chen Y, Huang LYM (2016) Epac-protein kinase C alpha signaling in purinergic P2X3R-mediated hyperalgesia after inflammation. Pain 157:1541–1550. https://doi.org/10.1097/j.pain.0000000000000547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Simonetti M, Giniatullin R, Fabbretti E (2008) Mechanisms mediating the enhanced gene transcription of P2X 3 receptor by calcitonin gene-related peptide in trigeminal sensory neurons. J Biol Chem 283:18743–18752. https://doi.org/10.1074/jbc.M800296200

    Article  CAS  PubMed  Google Scholar 

  42. Eijkelkamp N, Wang H, Garza-Carbajal A, Willemen HLDM, Zwartkruis FJ, Wood JN, Dantzer R, Kelley KW, Heijnen CJ, Kavelaars A (2010) Low nociceptor GRK2 prolongs prostaglandin E2 hyperalgesia via biased cAMP signaling to Epac/Rap1, protein kinase C , and MEK/ERK. J Neurosci 30:12806–12815. https://doi.org/10.1523/JNEUROSCI.3142-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hansen RR, Nasser A, Falk S, Baldvinsson SB, Ohlsson PH, Bahl JMC, Jarvis MF, Ding M, Heegaard AM (2012) Chronic administration of the selective P2X3, P2X2/3 receptor antagonist, A-317491, transiently attenuates cancer-induced bone pain in mice. Eur J Pharmacol 688:27–34. https://doi.org/10.1016/j.ejphar.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  44. Teixeira JM, Bobinski F, Sluka KA et al (2018) The knee joint experimental synovitis. 54:6174–6186. https://doi.org/10.1007/s12035-016-0146-2.SP2X3

  45. Teixeira JM, Oliveira MCG, Nociti FH et al (2010) Involvement of temporomandibular joint P2X3 and P2X2/3 receptors in carrageenan-induced inflammatory hyperalgesia in rats. Eur J Pharmacol 645:79–85. https://doi.org/10.1016/j.ejphar.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  46. Deiteren A, van der Linden L, de Wit A, Ceuleers H, Buckinx R, Timmermans JP, Moreels TG, Pelckmans PA, de Man JG, de Winter BY (2015) P2X3 receptors mediate visceral hypersensitivity during acute chemically-induced colitis and in the post-inflammatory phase via different mechanisms of sensitization. PLoS One 10:e0123810. https://doi.org/10.1371/journal.pone.0123810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang P-A, Zhu H-Y, Xu Q-Y, du WJ, Hu S, Xu GY (2018) Sensitization of P2X3 receptors in insular cortex contributes to visceral pain of adult rats with neonatal maternal deprivation. Mol Pain 14:1744806918764731. https://doi.org/10.1177/1744806918764731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barclay J, Patel S, Dorn G, Wotherspoon G, Moffatt S, Eunson L, Abdel’al S, Natt F, Hall J, Winter J, Bevan S, Wishart W, Fox A, Ganju P (2002) Functional downregulation of P2X3 receptor subunit in rat sensory neurons reveals a significant role in chronic neuropathic and inflammatory pain. J Neurosci 22:8139–8147. https://doi.org/10.1523/jneurosci.22-18-08139.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, van Biesen T, Cartmell J, Bianchi B, Niforatos W, Kage K, Yu H, Mikusa J, Wismer CT, Zhu CZ, Chu K, Lee CH, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Faltynek C (2002) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A 99:17179–17184. https://doi.org/10.1073/pnas.252537299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Fernando Moreira Simabuco (University of Campinas) for many helpful discussions and technical support. We also kindly acknowledge Letícia Tamborlim (University of Campinas and São Paulo State University) and Karina Danielle Pereira (University of Campinas) for the assistance with Western blotting experiments.

Funding

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001—and by the Sao Paulo Research Foundation (FAPESP) (grant number no. 201717919-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cláudia Gonçalves de Oliveira-Fusaro.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

All the procedures followed the guidelines on using laboratory animals from IASP [1] and approved by the Committee on Animal Research of the State University of Campinas (license number 3883-1).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jorge, C.O., de Azambuja, G., Gomes, B.B. et al. P2X3 receptors contribute to transition from acute to chronic muscle pain. Purinergic Signalling 16, 403–414 (2020). https://doi.org/10.1007/s11302-020-09718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09718-x

Keywords

Navigation