Skip to main content
Log in

The effect of low ascorbic acid content on tomato fruit ripening

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The oxidant/antioxidant balance affects the ripening time of tomato fruit.

Abstract

Ripening of tomato fruit is associated with several modifications such as loss of cell wall firmness and transformation of chloroplasts to chromoplasts. Besides a peak in H2O2, reactive oxygen species (ROS) are observed at the transition stage. However, the role of different components of oxidative stress metabolism in fruit ripening has been scarcely addressed. Two GDP-l-galactose phosphorylase (GGP) Solanum lycopersicum L. cv Micro-Tom mutants which have fruit with low ascorbic acid content (30% of wild type) were used in this work to unravel the participation of ascorbic acid and H2O2 in fruit maturation. Both GGP mutants show delayed fruit maturation with no peak of H2O2; treatment with ascorbic acid increases its own concentration and accelerates ripening only in mutants to become like wild type plants. Unexpectedly, the treatment with ascorbic acid increases H2O2 synthesis in both mutants resembling what is observed in wild type fruit. Exogenous supplementation with H2O2 decreases its own synthesis delaying fruit maturation in plants with low ascorbic acid content. The site of ROS production is localized in the chloroplasts of fruit of all genotypes as determined by confocal microscopy analysis. The results presented here demonstrate that both ascorbic acid and H2O2 actively participate in tomato fruit ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alegre ML, Steelheart C, Baldet P, Rothan C, Just D, Okabe Y, Ezura H, Smirnoff N, Gergoff Grozeff GE, Bartoli CG (2020) Deficiency of GDP-l-galactose phosphorylase, an enzyme required for ascorbic acid synthesis, reduces tomato fruit yield. Planta 251:54

    CAS  PubMed  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amako K, Chen G, Asada K (1994) Separate assay specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol 35:497–504

    CAS  Google Scholar 

  • Amaya I, Osorio S, Martinez-Ferri E, Lima-Silva V, Doblas VG, Fernández-Muñoz R, Fernie AR, Botella MA, Valpuesta V (2014) Increased antioxidant capacity in tomato by ectopic expression of the strawberry d-galacturonate reductase gene. Biotechnol J. https://doi.org/10.1002/biot.201400279

    Article  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  PubMed  Google Scholar 

  • Baldet P, Bres C, Okabe Y, Mauxion JP, Just D, Bournonville C, Ferrand C, Mori K, Ezure H, Rothan C (2013) Investigating the role of vitamin C in tomato through TILLING identification of ascorbate-deficient tomato mutants. Plant Biotechnol 30:308–314

    Google Scholar 

  • Barsan C, Zouine M, Maza E, Bian W, Egea I, Rossignol M, Bouyssie D, Pichereaux C, Purgatto E, Bouzayen M, Latché A, Pech J-C (2012) Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. Plant Physiol 160:708–725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Simontachi M, Guiamet JJ, Montaldi E, Puntarulo S (1995) Antioxidant enzymes and lipid peroxidation during aging of Chrysanthemum morifolium flowers. Plant Sci 104:161–168

    CAS  Google Scholar 

  • Bartoli CG, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo S (1999) Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L leaves. J Exp Bot 50:373–381

    Google Scholar 

  • Bartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    CAS  PubMed  Google Scholar 

  • Bartoli CG, Tambussi EA, Fanello DD, Foyer CH (2009) Control of ascorbic acid synthesis and accumulation by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett 583:118–122

    CAS  PubMed  Google Scholar 

  • Beauchamp CH, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  • Bouvier F, Backhaus RA, Camara B (1998) Induction and control of chromoplast-specific carotenoid genes by oxidative stress. J Biol Chem 273:30651–30659

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 71:248–254

    Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1996) Chemistry and biochemistry of ascorbic acid. In: Cadenas E, Paker L (eds) Handbook of antioxidants. Marcel Dekker Inc, New York, pp 91–115

    Google Scholar 

  • Bulley S, Laing W (2016) The regulation of ascorbate biosynthesis. Curr Opin Plant Biol 33:15–22

    CAS  PubMed  Google Scholar 

  • Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Andrew A, Laing WA (2012) Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotechnol J 10:390–397

    CAS  PubMed  Google Scholar 

  • Cai X, Zhang C, Ye J, Hu T, Ye Z, Li H, Zhang Y (2015) Ectopic expression of FaGalUR leads to ascorbate accumulationwith enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Growth Regul 76:187–197

    CAS  Google Scholar 

  • Caviglia M, Mazorra Morales LM, Concellón A, Gergoff Grozeff GE, Wilson M, Foyer CH, Bartoli CG (2018) Ethylene signaling triggered by low concentrations of ascorbic acid regulates biomass accumulation in Arabidopsis thaliana. Free Radical Bio Med 122:130–136

    CAS  Google Scholar 

  • Cocaliadis MF, Fernández-Muñoz R, Pons C, Orzaez D, Granell A (2014) Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J Exp Bot 65:4589–4598

    CAS  PubMed  Google Scholar 

  • Colville L, Smirnoff N (2008) Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. J Exp Bot 59:3857–3868

    CAS  PubMed  Google Scholar 

  • Cronje C, George GM, Fernie AR, Bekker J, Kossmann J, Bauer R (2012) Manipulation of l-ascorbic acid biosynthesis pathways in Solanum lycopersicum: elevated GDP-mannose pyrophosphorylase activity enhances l-ascorbate levels in red fruit. Planta 235:553–564

    CAS  PubMed  Google Scholar 

  • Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombie S, Gibon Y, Pétriacq P (2019) Get the balance right: ROS homeostasis and redox signalling in fruit. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01091

    Article  PubMed  PubMed Central  Google Scholar 

  • De Simone A, Hubbard R, Viñegra de la Torre N, Velappan Y, Wilson M, Considine MJ, Soppe WJJ, Foyer CH (2017) Redox changes during the cell cycle in the embryonic root meristem of Arabidopsis thaliana. Antioxid Redox Signaling 27:1505–1519

    CAS  Google Scholar 

  • Dong JG, Fernández-Maculet JC, Yang SF (1992) Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci USA 89:9789–9793

    CAS  PubMed  Google Scholar 

  • Egea I, Bian W, Barsan C, Jauneau A, Pech JC, Latche A, Li Z, Chervin C (2011) Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue. Ann Bot 108:291–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2016) Stress-triggered redox signaling: what´s in pROSpect? Plant Cell Environ 39:951–964

    CAS  PubMed  Google Scholar 

  • Foyer CH, Kyndt T, Hancock RD (2020) Vitamin C in plants: novel concepts, new perspectives and outstanding issues. Antioxid Redox Signaling. https://doi.org/10.1089/ars.2019.7819

    Article  Google Scholar 

  • Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signaling from chloroplasts to the nucleus. Physiol Plant 138:430–439

    CAS  PubMed  Google Scholar 

  • Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-d-mannose epimerase (GME) plays a key role at the intersection of ascorbate and non cellulosic cell wall biosynthesis in tomato. Plant J 60:499–508

    CAS  PubMed  Google Scholar 

  • Giovannoni J, Nguyen C, Ampofo B, Zhong S, Fei Z (2017) The epigenome and transcriptional dynamics of fruit ripening. Annu Rev Plant Biol 68:61–84

    CAS  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    CAS  PubMed  Google Scholar 

  • Huan C, Jiang L, An X, Yu M, Xu Y, Ma R, Yu Z (2016) Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiol Biochem 104:294–303

    CAS  PubMed  Google Scholar 

  • Jimenez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, Mullineaux P (2002) Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214:751–758

    CAS  PubMed  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    CAS  PubMed  Google Scholar 

  • Kumar V, Irfan M, Ghosh S, Chakraborty N, Chakraborty S, Datta A (2016) Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma 253:581–594

    CAS  PubMed  Google Scholar 

  • Li JM, Wheatcroft S, Fan LM, Kearney T, Shah AM (2004) Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2- production, vascular tone, and mitogen-activated protein kinase activation. Circulation 109:1307–1313

    CAS  PubMed  Google Scholar 

  • Martí MC, Camejo D, Olmos E, Sandalio LM, Fernández-García N, Jiménez A, Sevilla F (2009) Characterisation and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruits. Plant Biol 11:613–624

    PubMed  Google Scholar 

  • Martí MC, Camejo D, Vallejo F, Romojaro F, Bacrizo S, Palma JM, Sevilla F, Jiménez A (2011) Influence of fruit ripening stage and harvest period on the antioxidant content of sweet pepper cultivars. Plant Foods Hum Nutr 66:416–423

    PubMed  Google Scholar 

  • Noctor G, Reichheld J-P, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12

    CAS  PubMed  Google Scholar 

  • Palma JM, Sevilla F, Jiménez A, del Río LA, Corpas FJ, Álvarez de Morales P, Camejo DM (2015) Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes. Ann Bot 116:627–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in arabidopsis. Plant Physiol 139:1291–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Artuso F, Galatro A, Lima A, Batthyány C, Simontacchia M (2019) Early events following phosphorus restriction involve changes in proteome and affects nitric oxide metabolism in soybean leaves. Environ Exp Bot 161:203–217

    CAS  Google Scholar 

  • Steelheart C, Alegre M, Vera Bahima J, Senn ME, Simontacchi M, Bartoli CG, Gergoff Grozeff GE (2019a) Nitric oxide improves the effect of 1-methylcyclopropene extending the tomato (Lycopersicum esculentum L.) fruit postharvest life. Sci Hortic 255:193–201

    CAS  Google Scholar 

  • Steelheart C, Galatro A, Bartoli CG, Gergoff Grozeff GE (2019b) Nitric oxide and hydrogen peroxide: signals in fruit ripening. In: Gupta DK, Palma JM, Corpas FJ (eds) Nitric oxide and hydrogen peroxide: signalling in higher plants. Springer Nature Switzerland AG, Cham, pp 175–200

    Google Scholar 

  • Templar J, Kon SP, Milligan TP, Newman DJ, Raftery MJ (1999) Increased plasma malondialdehyde levels in glomerular disease as determined by a fully validated HPLC method. Nephrol Dial Transplant 14:946–951

    CAS  PubMed  Google Scholar 

  • Tu K, Jancsók P, Nicolaï B, De Baerdemaeker J (2000) Use of laser-scattering imaging to study tomato-fruit quality in relation to acoustic and compression measurements. Int J Food Sci Technol 35:503–510

    CAS  Google Scholar 

  • Zhang C, Ouyang B, Yang C, Zhang X, Liu H, ZhangY ZJ, Li H, Ye Z (2013) Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-d-Mannose pyrophosphorylase gene in tomato plant. PLoS ONE 8(4):e61987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are really grateful to Dr Rebecca Stevens for the English edition of the manuscript and to Dr Diana Lauff for her technical assistance. GGG and CGB are career members from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina). CS, MA and IG are fellows at CONICET. The experiments were supported by grants PICT 2015-0103 (Agencia Nacional de Promoción Científica y Técnica, Argentina) and A322 and A337 (Universidad Nacional de La Plata, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Guillermo Bartoli.

Additional information

Communicated by Mee-Len Chye.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steelheart, C., Alegre, M.L., Baldet, P. et al. The effect of low ascorbic acid content on tomato fruit ripening. Planta 252, 36 (2020). https://doi.org/10.1007/s00425-020-03440-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03440-z

Keywords

Navigation