Skip to main content
Log in

Measurements of Cosmic Ray Muon Distributions with IceTop and IceCube

  • ELEMENTARY PARTICLES AND FIELDS
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The IceTop detector is the surface component of the IceCube Observatory: an array of 81 ‘‘stations’’ of two frozen water tanks. Each tank contains two photosensors, and is sensitive to both the electromagnetic component of cosmic ray air showers as well as surface muons. While the electromagnetic component dominates in tanks close to the shower core, the signals from muons become more pronounced at large distances and at high zenith angles. Additionally, the deeply-buried in-ice component of IceCube can measure the high-energy penetrating muons from air showers. Together, these detectors can study the distributions of these air shower muons, and by comparing to the predictions of various hadronic interaction models, use them to constrain these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. A. Achterberg et al. (IceCube Collab.), Astropart. Phys. 26 155 (2006).

    Article  ADS  Google Scholar 

  2. R. Abbasi et al. (IceCube Collab.), Nucl. Instrum. Methods A 700, 188 (2013).

    Article  ADS  Google Scholar 

  3. M. G. Aartsen et al. (IceCube Collab.), Phys. Rev. D 100, 082002 (2019).

    Article  ADS  Google Scholar 

  4. M. G. Aartsen et al. (IceCube Collab.), Astropart.Phys. 78, 1 (2016).

    Article  ADS  Google Scholar 

  5. T. Fuchs et al. (IceCube Collab.), in Proceedings of the 25th ECRS, Turin, 2016 (2017); arXiv:1701.04067 [astro-ph.HE].

  6. H. Dembinski et al. (EAS-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger, SUGAR, Telescope Array, and Yakutsk Collabs.), in Proceedings of UHECR, 2018 (2019); arXiv:1902.08124 [astro-ph.HE].

  7. J. Gonzalez et al. (IceCube Collab.), in Proceedings of ISVHECRI, Japan, 2018, EPJ Web Conf. 208, 03003 (2019).

  8. T. K. Gaisser, Astropart. Phys. 35, 801 (2012).

    Article  ADS  Google Scholar 

  9. D. Heck, J. Knapp, J. N. Capdeviell, G. Schatz, and T. Thouw, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, FZKA 6019 (Forschungszentrum Karlsruhe, 1998).

  10. S. Agostinelli et al. (Geant4 Collab.), Nucl. Instrum. Methods A 506, 250 (2003).

    Article  ADS  Google Scholar 

  11. E. J. Ahn, R. Engel, T. K. Gaisser, P. Lipari, and T. Stanev, Phys. Rev. D 80, 094003 (2009).

    Article  ADS  Google Scholar 

  12. F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser, and T. Stanev, EPJ Web Conf. 99, 12001 (2015).

  13. S. Ostapchenko, Nucl. Phys. B Proc. Suppl 151, 143 (2006).

    Article  ADS  Google Scholar 

  14. T. Pierog et al., Phys. Rev. C 92, 034906 (2015).

    Article  ADS  Google Scholar 

  15. D. Soldin et al. (IceCube Collab.), in Proceedings of ISVHECRI, 2018, EPJ Web Conf. 208, 08007 (2019); arXiv:1811.03651 [astro-ph.HE].

  16. R. Enberg, M. Reno, and I. Sarcevic, Phys. Rev. D 78 043005 (2008).

    Article  ADS  Google Scholar 

  17. S. deRidder et al. (IceCube Collab.), in Proceedings of the 35th ICRC, 2017 (2017); PoS(ICRC2017)319.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rawlins.

Additional information

(for the IceCube Collaboration)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawlins, K. Measurements of Cosmic Ray Muon Distributions with IceTop and IceCube. Phys. Atom. Nuclei 83, 285–289 (2020). https://doi.org/10.1134/S1063778820020246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820020246

Navigation