Skip to main content
Log in

Higgs Boson with Mass around 125 GeV in SUSY Extensions of the SM

  • ELEMENTARY PARTICLES AND FIELDS
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The presence of the 125-GeV Higgs boson in the particle spectrum of the minimal supersymmetric (SUSY) standard model (MSSM) implies that the SUSY breaking scale has to be larger than \(1\text{ TeV}\). In this case some fine-tuning of the MSSM parameters is needed to get so light Higgs state. In a certain part of the parameter space of the simplest extension of the MSSM—next-to-minimal supersymmetric Standard Model (NMSSM) the restrictions on \(M_{S}\) are weaker than in the MSSM. This part of the NMSSM parameter space leads to some predictions for the spectrum of the Higgs bosons which are considered in this paper. The possible manifestations of new Higgs states at the LHC experiments are also discussed. The analysis performed in this article indicates that light exotic states in the \(U(1)\) extensions of the MSSM may result in the nonstandard decays of the 125-GeV Higgs boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

    ADS  Google Scholar 

  2. J. Ellis, S. Kelley, and D. V. Nanopoulos, Phys. Lett. B 260, 131 (1991).

    ADS  Google Scholar 

  3. P. Langacker and M. Luo, Phys. Rev. D 44, 817 (1991).

    ADS  Google Scholar 

  4. U. Amaldi, W. de Boer, and H. Fürstenau, Phys. Lett. B 260, 447 (1991).

    ADS  Google Scholar 

  5. F. Anselmo, L. Cifarelli, A. Peterman, and A. Zichichi, Nuovo Cimento A 104, 1817 (1991).

    ADS  Google Scholar 

  6. M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge Univ. Press, Cambridge, 1987).

    MATH  Google Scholar 

  7. F. del Aguila, G. Blair, M. Daniel, and G. G. Ross, Nucl. Phys. B 272, 413 (1986).

    ADS  Google Scholar 

  8. R. Barbieri, S. Ferrara, and C. A. Savoy, Phys. Lett. B 119, 343 (1982).

    ADS  Google Scholar 

  9. H. P. Nilles, M. Srednicki, and D. Wyler, Phys. Lett. B 120, 346 (1983).

    ADS  Google Scholar 

  10. L. Hall, J. Lykken, and S. Weinberg, Phys. Rev. D 27, 2359 (1983).

    ADS  Google Scholar 

  11. S. K. Soni and H. A. Weldon, Phys. Lett. B 126, 215 (1983).

    ADS  Google Scholar 

  12. H. P. Nilles, Int. J. Mod. Phys. A 5, 4199 (1990).

    ADS  Google Scholar 

  13. U. Ellwanger, C. Hugonie, and A. M. Teixeira, Phys. Rept. 496, 1 (2010).

    ADS  Google Scholar 

  14. Ya. B. Zel’dovich, I. Yu. Kobzarev, and L. B. Okun, Sov. Phys. JETP 40, 1 (1974).

    ADS  Google Scholar 

  15. A. Vilenkin, Phys. Rept. 121, 263 (1985).

    ADS  Google Scholar 

  16. C. Panagiotakopoulos and K. Tamvakis, Phys. Lett. B 446, 224 (1999).

    ADS  Google Scholar 

  17. C. Panagiotakopoulos and K. Tamvakis, Phys. Lett. B 469, 145 (1999).

    ADS  Google Scholar 

  18. S. F. King, S. Moretti, and R. Nevzorov, Phys. Rev. D 73, 035009 (2006).

    ADS  Google Scholar 

  19. S. F. King, S. Moretti, and R. Nevzorov, Phys. Lett. B 634, 278 (2006).

    ADS  Google Scholar 

  20. T. Hambye, E. Ma, M. Raidal, and U. Sarkar, Phys. Lett. B 512, 373 (2001).

    ADS  Google Scholar 

  21. R. Nevzorov, Phys. Lett. B 779, 223 (2018).

    ADS  Google Scholar 

  22. S. F. King, R. Luo, D. J. Miller, and R. Nevzorov, JHEP 0812, 042 (2008).

  23. P. A. Kovalenko, R. B. Nevzorov, and K. A. Ter-Martirosyan, Phys. At. Nucl. 61, 812 (1998).

    Google Scholar 

  24. R. B. Nevzorov and M. A. Trusov, JETP 91, 1079 (2000).

    ADS  Google Scholar 

  25. R. B. Nevzorov, K. A. Ter-Martirosyan, and M. A. Trusov, Phys. At. Nucl. 65, 285 (2002).

    Google Scholar 

  26. S. Hesselbach, D. J. Miller, G. Moortgat-Pick, R. Nevzorov, and M. Trusov, Phys. Lett. B 662, 199 (2008).

    ADS  Google Scholar 

  27. L. Durand and J. L. Lopez, Phys. Lett. B 217, 463 (1989).

    ADS  Google Scholar 

  28. M. Drees, Int. J. Mod. Phys. A 4, 3635 (1989).

    ADS  Google Scholar 

  29. R. Nevzorov and D. J. Miller, hep-ph/0411275.

  30. D. J. Miller, R. Nevzorov, and P. M. Zerwas, Nucl. Phys. B 681, 3 (2004).

    ADS  Google Scholar 

  31. D. J. Miller and R. Nevzorov, hep-ph/0309143.

  32. D. J. Miller, S. Moretti, and R. Nevzorov, hep-ph/0501139.

  33. S. F. King, M. Mühlleitner, and R. Nevzorov, Nucl. Phys. B 860, 207 (2012).

    ADS  Google Scholar 

  34. S. F. King, M. Mühlleitner, R. Nevzorov, and K. Walz, Nucl. Phys. B 870, 323 (2013).

    ADS  Google Scholar 

  35. S. F. King, M. Mühlleitner, R. Nevzorov, and K. Walz, Phys. Rev. D 90, 095014 (2014).

    ADS  Google Scholar 

  36. R. B. Nevzorov and M. A. Trusov, Phys. At. Nucl. 64, 1299 (2001).

    Google Scholar 

  37. R. B. Nevzorov and M. A. Trusov, Phys. At. Nucl. 65, 335 (2002).

    Google Scholar 

  38. R. B. Nevzorov and M. A. Trusov, Phys. At. Nucl. 64, 1513 (2001).

    Google Scholar 

  39. R. Nevzorov, Phys. Rev. D 87, 015029 (2013).

    ADS  Google Scholar 

  40. S. F. King, S. Moretti, and R. Nevzorov, AIP Conf. Proc. 881, 138 (2007).

    ADS  Google Scholar 

  41. S. F. King, S. Moretti, and R. Nevzorov, hep-ph/0601269.

  42. S. F. King, S. Moretti, and R. Nevzorov, Phys. Lett. B 650, 57 (2007).

    ADS  Google Scholar 

  43. P. Athron, J. P. Hall, R. Howl, S. F. King, D. J. Miller, S. Moretti, and R. Nevzorov, Nucl. Phys. Proc. Suppl. 200–202, 120 (2010).

    ADS  Google Scholar 

  44. J. P. Hall, S. F. King, R. Nevzorov, S. Pakvasa, and M. Sher, Phys. Rev. D 83, 075013 (2011).

    ADS  Google Scholar 

  45. J. P. Hall, S. F. King, R. Nevzorov, S. Pakvasa, and M. Sher, arXiv: 1109.4972 [hep-ph].

  46. J. P. Hall, S. F. King, R. Nevzorov, S. Pakvasa, and M. Sher, PoS(QFTHEP2010) 069 (2010).

  47. R. Nevzorov and S. Pakvasa, Phys. Lett. B 728, 210 (2014).

    ADS  Google Scholar 

  48. P. Athron, M. Mühlleitner, R. Nevzorov, and A. G. Williams, JHEP 1501, 153 (2015).

    ADS  Google Scholar 

  49. P. Athron, M. Mühlleitner, R. Nevzorov, and A. G. Williams, arXiv: 1602.04453 [hep-ph].

  50. R. Nevzorov and S. Pakvasa, Nucl. Part. Phys. Proc. 273–275, 690 (2016).

    Google Scholar 

  51. R. Nevzorov, PoS(EPS-HEP2015) 381 (2015).

  52. R. Nevzorov, Int. J. Mod. Phys. A 33, 1844007 (2018).

    ADS  Google Scholar 

  53. S. F. King and R. Nevzorov, JHEP 1603, 139 (2016).

    ADS  Google Scholar 

  54. R. Nevzorov, Phys. Rev. D 89, 055010 (2014).

    ADS  Google Scholar 

  55. P. Athron, S. F. King, D. J. Miller, S. Moretti, and R. Nevzorov, Phys. Lett. B 681, 448 (2009).

    ADS  Google Scholar 

  56. P. Athron, S. F. King, D. J. Miller, S. Moretti, and R. Nevzorov, Phys. Rev. D 80, 035009 (2009).

    ADS  Google Scholar 

  57. P. Athron, S. F. King, D. J. Miller, S. Moretti, and R. Nevzorov, arXiv: 0810.0617 [hep-ph].

  58. P. Athron, S. F. King, D. J. Miller, S. Moretti, and R. Nevzorov, Phys. Rev. D 84, 055006 (2011).

    ADS  Google Scholar 

  59. P. Athron, S. F. King, D. J. Miller, S. Moretti, and R. Nevzorov, Phys. Rev. D 86, 095003 (2012).

    ADS  Google Scholar 

  60. P. Athron, D. Harries, R. Nevzorov, and A. G. Williams, Phys. Lett. B 760, 19 (2016).

    ADS  Google Scholar 

  61. P. Athron, D. Harries, R. Nevzorov, and A. G. Williams, JHEP 1612, 128 (2016).

    ADS  Google Scholar 

  62. J.-M. Frère, R. B. Nevzorov, and M. I. Vysotsky, Phys. Lett. B 394, 127 (1997).

    ADS  Google Scholar 

  63. S. F. King and A. Merle, JCAP 1208, 016 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nevzorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevzorov, R. Higgs Boson with Mass around 125 GeV in SUSY Extensions of the SM. Phys. Atom. Nuclei 83, 338–350 (2020). https://doi.org/10.1134/S1063778820020222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820020222

Navigation