Skip to main content
Log in

Fermion Condensation: Theory and Experiment

  • NUCLEI
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Fundamentals of fermion-condensation physics are outlined. Fermion condensation is a phase transition occurring in a strongly correlated Fermi system upon a topological reconstruction of the Landau ground state and leading to the formation of a fermion condensate that possesses the dispersionless single-particle spectrum \(\epsilon({\mathbf{p}})=0\) in the momentum-space region adjacent to the Fermi surface and, accordingly, an anomalously enhanced density of single-particle states. A original method is developed for solving the set of nonlinear integral equations of fermion-condensation theory. This method makes it possible to analyze the problem of quantum chaos in strongly interacting multifermion systems. The computational technique used is demonstrated by applying it to superdense quark–gluon plasma, where the structure of exchange quark–quark interaction is well known. In electron systems featuring a fermion condensate, the magnitude of the gap appearing in the single-particle spectrum owing to Cooper pairing is shown to be much larger than that in Bardeen–Cooper–Schrieffer (BCS) theory. This explains both a high superconducting-transition temperature \(T_{c}\) and, with allowance for \(C_{4}\) crystal-lattice symmetry, the \(D\)-wave pairing-gap structure observed in cuprates. It is found that, in addition to the BCS gap \(\Delta\), the spectrum of single-particle excitations of superconducting systems where a fermion condensate is present develops a nonsuperconducting gap \(\Upsilon\) that owes its existence to the interaction of condensate particles with normal quasiparticles residing outside the condensate region in momentum space. The question of whether these results are pertinent to the two-gap structure recently unearthed in the excitation spectrum of cuprates upon analyzing ARPES data is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. I. M. Lifshits, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

  2. L. D. Landau, Sov. Phys. JETP 3, 920 (1956).

    Google Scholar 

  3. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  4. G. E. Volovik, JETP Lett. 53, 222 (1991);

    ADS  Google Scholar 

  5. Springer Lect. Notes Phys. 718, 31 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  6. P. Nozières, J. Phys. I (France) 2, 443 (1992).

    Article  Google Scholar 

  7. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev. B 78, 075120 (2008).

    Article  ADS  Google Scholar 

  8. A. Kaminski, T. Kondo, T. Takeuchi, and G. Gu, Philos. Mag. 95, 453 (2015).

    Article  ADS  Google Scholar 

  9. M. V. Zverev, V. A. Khodel, and V. R. Shaginyan, J. Exp. Theor. Phys. 82, 567 (1996).

    ADS  Google Scholar 

  10. M. V. Zverev and V. V. Borisov, JETP Lett. 81, 503 (2005).

    Article  ADS  Google Scholar 

  11. L. P. Pitaevskiĭ, Sov. Phys. JETP 10, 1267 (1959).

    Google Scholar 

  12. V. R. Shaginyan, JETP Lett. 81, 222 (2005).

    Article  ADS  Google Scholar 

  13. V. R. Shaginyan, A. Z. Mzezane, V. A. Stephanovich, G. S. Japaridze, and E. V. Kirichenko, Phys. Scr. 99, 065801 (2019).

    Article  ADS  Google Scholar 

  14. Y. S. Kushnirenko, A. A. Kordyuk, A. V. Fedorov, E. Haubold, T. Wolf, B. Büchner, and S. V. Borisenko, Phys. Rev. B 96, 100504(R) (2017).

  15. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Interscience, New York, 1967).

  16. V. A. Khodel, V. R. Shaginyan, and P. Shuk, JETP Lett. 63, 752 (1996).

    Article  ADS  Google Scholar 

  17. V. A. Khodel and M. V. Zverev, JETP Lett. 74, 502 (2001).

    Article  ADS  Google Scholar 

  18. M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schafer, Rev. Mod. Phys. 80, 1455 (2008).

    Article  ADS  Google Scholar 

  19. C. J. Pethick, G. Baym, and H. Monien, Nucl. Phys. A 498, 313 (1989).

    Article  ADS  Google Scholar 

  20. A. N. Kolmogorov, Probl. Peredachi Inform. 1, 3 (1965).

    Google Scholar 

  21. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Prentice-Hall, London, 1963).

  22. V. A. Khodel and M. V. Zverev, JETP Lett. 85, 404 (2007).

    Article  ADS  Google Scholar 

  23. V. A. Khodel, J. W. Clark, and M. V. Zverev, JETP Lett. 105, 267 (2017).

    Article  ADS  Google Scholar 

  24. V. A. Khodel, J. W. Clark, and M. V. Zverev, JETP Lett. 108, 260 (2018).

    Article  ADS  Google Scholar 

  25. V. A. Khodel, J. Low Temp. Phys. 191, 14 (2018).

    Article  ADS  Google Scholar 

  26. R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nomara, H. Takagi, C. Proust, and N. E. Hussey, Science (Washington, DC, U. S.) 323, 603 (2009).

    Article  ADS  Google Scholar 

  27. N. E. Hussey, R. A. Cooper, X. Xu, I. Mouzopoulou, Y. Wang, B. Vignolle, and C. Proust, Phys. Trans. R. Soc. A 369, 1626 (2011).

    Article  ADS  Google Scholar 

  28. N. E. Hussey, H. Gordon-Moys, J. Kokaly, and R. H. McKenzie, J. Phys.: Conf. Ser. 449, 012004 (2013).

    Google Scholar 

  29. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Lett. A 318, 3281 (2018).

    Article  ADS  Google Scholar 

  30. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986);

    Article  ADS  Google Scholar 

  31. Rev. Mod. Phys. 60, 585 (1988).

  32. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Goa, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).

    Article  ADS  Google Scholar 

  33. S. T. Belyaev, Sov. Phys. JETP 7, 289 (1958);

    Google Scholar 

  34. Sov. Phys. JETP 7, 299 (1958).

  35. M. Yu. Mel’nikov, A. A. Shashkin, V. T. Dolgopolov, A. X. Y. Zhu, S. V. Kravchenko, S.H. Huang, and C. W. Liu, Phys. Rev. B 99, 081106 (R) (2019).

  36. S. V. Kravchenko, G. V. Kravchenko, J. G. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039 (1994).

    Article  ADS  Google Scholar 

  37. E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).

    Article  ADS  Google Scholar 

  38. S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys. 67, 1 (2004).

    Article  ADS  Google Scholar 

  39. A. Punnnoose and A. M. Finkel’stein, Science (Washington, DC, U. S.) 310, 289 (2005).

    Article  ADS  Google Scholar 

  40. B. L. Altshuler and A. G. Aronov, Mod. Probl. Condens. Matter Sci. 10, 1 (1985).

    Article  Google Scholar 

  41. A. Punnnoose and A. M. Finkel’stein, Phys. Rev. Lett. 88, 016802 (2002).

    Article  ADS  Google Scholar 

  42. A. A. Shashkin, A. A. Kapustin, E. V. Deviatov, V. T. Dolgopolov, and Z. D. Kvon, Phys. Rev. B 76, 241302 (R) (2007).

  43. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature (London, U.K.) 518, 179 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to G.E. Volovik, R. Green, V.T. Dolgopolov, A. Kaminski, Ya. Kopelevich, S.V. Kravchenko, L.P. Pitaevsky, and V.R. Shaginyan for stimulating discussions on the problems addressed in this article. Special thanks are due to A. Kaminski for his kind permission to use here Fig. 8 from [7], and to S.V. Kravchenko, who presented Fig. 7 at our disposal.

Funding

V.A. Khodel and J.W. Clark gratefully acknowledge the support of McDonnell Center for the Space Sciences, and J.W. Clark is also indebted to Centro de Investigação em Matemática e Aplicações, University of Madeira, for the hospitality extended to him.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Khodel or M. V. Zverev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodel, V.A., Clark, J.W. & Zverev, M.V. Fermion Condensation: Theory and Experiment. Phys. Atom. Nuclei 83, 101–117 (2020). https://doi.org/10.1134/S1063778820020167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820020167

Navigation