Skip to main content
Log in

Ultrasound-assisted, low-solvent and acid/base-free synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols as potent antimicrobial and antioxidant agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

One of the goals of green chemistry is to use environmentally friendly solvents or remove and reduce the volume of harmful spent solvents. In this study, a novel process for the synthesis of 5-substituted 1,3,4-oxadiazole-2-thiol derivatives was proposed via ultrasound-assisted reaction of aryl hydrazides with CS2 (1:1 molar ratio) in some drops of DMF in the absence of basic or acidic catalysts. They were produced in good to excellent yields under easy workup and purification conditions. In order to prove the usefulness of the prepared compounds, their antioxidant, antibacterial, and antifungal potentials were screened by DPPH free radical scavenging, serial twofold microdilution and streak plate methods. Acceptable to significant inhibitory activities were observed with synthesized heterocycles. The results showed that 5-(4-fluorophenyl)-1,3,4-oxadiazole-2-thiol (3c) is an broad-spectrum antimicrobial agent. Many of them displayed remarkable antioxidant properties comparable to standard controls (ascorbic acid and α-tocopherol). Synthesized 1,3,4-oxadiazoles are also potent candidates to treat cancer, Parkinson, inflammatory, and diabetes diseases.

Graphic Abstract

Eighteen 5-substituted 1,3,4-oxadiazole-2-thiol derivatives as potent antimicrobial and antioxidant agents were prepared via a new, efficient and green procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Albratty M, El-Sharkawy KA, Alhazmi HA (2019) Synthesis and evaluation of some new 1,3,4-oxadiazoles bearing thiophene, thiazole, coumarin, pyridine and pyridazine derivatives as antiviral agents. Acta Pharm 69:261–276. https://doi.org/10.2478/acph-2019-0015

    Article  CAS  PubMed  Google Scholar 

  2. Iyer VB, Gurupadayya B, Koganti VS, Inturi B, Chandan RS (2017) Design, synthesis and biological evaluation of 1,3,4-oxadiazoles as promising anti-inflammatory agents. Med Chem Res 26:190–204. https://doi.org/10.1007/s00044-016-1740-6

    Article  CAS  Google Scholar 

  3. Makane VB, Krishna VS, Krishna EV, Shukla M, Mahizhaveni B, Misra S, Chopra S, Sriram D, Azger Dusthackeer VN, Rode HB (2019) Novel 1,3,4-oxadiazoles as antitubercular agents with limited activity against drug-resistant tuberculosis. Future Med Chem 11:499–510. https://doi.org/10.4155/fmc-2018-0378

    Article  CAS  PubMed  Google Scholar 

  4. Hassanzadeh F, Sadeghi-Aliabadi H, Jafari E, Sharifzadeh A, Dana N (2019) Synthesis and cytotoxic evaluation of some quinazolinone-5-(4-chlorophenyl) 1,3,4-oxadiazole conjugates. Res Pharm Sci 14:408–413. https://doi.org/10.4103/1735-5362.268201

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pitasse-Santos P, Sueth-Santiago V, Lima MEF (2018) 1,2,4- and 1,3,4-Oxadiazoles as scaffolds in the development of antiparasitic agents. J Braz Chem Soc 29:435–456. https://doi.org/10.21577/0103-5053.20170208

    Article  CAS  Google Scholar 

  6. Yurttaş L, Çavuşoğlu BK, Çiftçi GA, Temel HE (2018) Synthesis and biological evaluation of new 1,3,4-oxadiazoles as potential anticancer agents and enzyme inhibitors. Anti-Cancer Agents Med Chem 18:914–921. https://doi.org/10.2174/1871520618666180322123327

    Article  CAS  Google Scholar 

  7. Khanam R, Hejazi II, Shahabuddin S, Bhat AR, Athar F (2019) Pharmacokinetic evaluation, molecular docking and in vitro biological evaluation of 1,3,4-oxadiazole derivatives as potent antioxidants and STAT3 inhibitors. J Pharm Anal 9:133–141. https://doi.org/10.1016/j.jpha.2018.12.002

    Article  PubMed  Google Scholar 

  8. Sengupta P, Mal M, Mandal S, Singh J, Maity TK (2008) Evaluation of antibacterial and antifungal activity of some 1,3,4-oxadiazoles. Iran J Pharmacol Ther 7:165–167

    Google Scholar 

  9. Singh S, Sharma LK, Saraswat A, Siddiqui IR, Kehri HK, Singh RKP (2013) Electrosynthesis and screening of novel 1,3,4-oxadiazoles as potent and selective antifungal agents. RSC Adv 3:4237–4245. https://doi.org/10.1039/C3RA21904F

    Article  CAS  Google Scholar 

  10. Nachman S, Zheng N, Acosta EP, Teppler H, Homony B, Graham B, Fenton T, Xu X, Wenning L, Spector SA, Frenkel LM, Alvero C, Worrell C, Handelsman E, Wiznia A (2014) Pharmacokinetics, safety, and 48-week efficacy of oral raltegravir in HIV-1-infected children aged 2 through 18 years. Clin Infect Dis 58:413–422. https://doi.org/10.1093/cid/cit696

    Article  CAS  PubMed  Google Scholar 

  11. Thakkar SS, Thakor P, Doshi H, Ray A (2017) 1,2,4-triazole and 1,3,4-oxadiazole analogues: synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorg Med Chem 25:4064–4075. https://doi.org/10.1016/j.bmc.2017.05.054

    Article  CAS  PubMed  Google Scholar 

  12. Paruch K, Popiołek Ł, Wujec M (2020) Antimicrobial and antiprotozoal activity of 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines: a review. Med Chem Res 29:1–16. https://doi.org/10.1007/s00044-019-02463-w

    Article  CAS  Google Scholar 

  13. Miller K, Moul JW, Gleave M, Fizazi K, Nelson JB, Morris T, Nathan FE, McIntosh S, Pemberton K, Higano CS (2013) Phase III, randomized, placebo-controlled study of once-daily oral zibotentan (ZD4054) in patients with non-metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 16:187–192. https://doi.org/10.1038/pcan.2013.2

    Article  CAS  PubMed  Google Scholar 

  14. Sugiura M, Kobayashi S (2005) N-Acylhydrazones as versatile electrophiles for the synthesis of nitrogen-containing compounds. Angew Chem 44:5176–5186. https://doi.org/10.1002/anie.200500691

    Article  CAS  Google Scholar 

  15. Gao Q, Liu S, Wu X, Zhang J, Wu A (2015) Direct annulation of hydrazides to 1,3,4-oxadiazoles via oxidative C(CO)-C(methyl) bond cleavage of methyl ketones. Org Lett 17:2960–2963. https://doi.org/10.1021/acs.orglett.5b01241

    Article  CAS  PubMed  Google Scholar 

  16. Yu W, Huang G, Zhang Y, Liu H, Dong L, Yu X, Li Y, Chang J (2013) I2-Mediated oxidative C–O bond formation for the synthesis of 1,3,4-oxadiazoles from aldehydes and hydrazides. J Org Chem 78:10337–10343. https://doi.org/10.1021/jo401751h

    Article  CAS  PubMed  Google Scholar 

  17. Zhang G, Yu Y, Zhao Y, Xie X, Ding C (2017) Iron(III)/TEMPO-catalyzed synthesis of 2,5-disubstituted 1,3,4-oxadiazoles by oxidative cyclization under mild conditions. Synlett 28:1373–1377. https://doi.org/10.1055/s-0036-1588747

    Article  CAS  Google Scholar 

  18. Guin S, Ghosh T, Rout SK, Banerjee A, Patel BK (2011) Cu(II) catalyzed imine C–H functionalization leading to synthesis of 2,5-substituted 1,3,4-oxadiazoles. Org Lett 13:5976–5979. https://doi.org/10.1021/ol202409r

    Article  CAS  PubMed  Google Scholar 

  19. Fan Y, He Y, Liu X, Hu T, Ma H, Yang X, Luo X, Huang G (2016) Iodine-mediated domino oxidative cyclization: one-pot synthesis of 1,3,4-oxadiazoles via oxidative cleavage of C(sp2)–H or C(sp)–H bond. J Org Chem 81:6820–6825. https://doi.org/10.1021/acs.joc.6b01135

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Cao J, Chen Q, He M (2015) One-pot synthesis of 2,5-diaryl 1,3,4-oxadiazoles via di-tert-butyl peroxide promoted N-acylation of aryl tetrazoles with aldehydes. J Org Chem 80:4743–4748. https://doi.org/10.1021/acs.joc.5b00207

    Article  CAS  PubMed  Google Scholar 

  21. Park YD, Kim JJ, Chung HA, Kweon DH, Cho SD, Lee SG, Yoon YJ (2003) Facile synthesis of symmetric and unsymmetric 1,3,4-oxadiazoles using 2-acyl(or aroyl)pyridazin-3-ones. Synthesis 2003:560–564. https://doi.org/10.1055/s-2003-37647

    Article  Google Scholar 

  22. Li T, Wen G, Li J, Zhang W, Wu S (2019) A useful synthesis of 2-acylamino-1,3,4-oxadiazoles from acylthiosemicarbazides using potassium iodate and the discovery of new antibacterial compounds. Molecules 24:1490. https://doi.org/10.3390/molecules24081490

    Article  CAS  PubMed Central  Google Scholar 

  23. Pawar SV, Rathod VK (2020) Role of ultrasound in assisted fermentation technologies for process enhancements. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2020.1725773

    Article  PubMed  Google Scholar 

  24. Beik J, Mehdizadeh AR, Shakeri-Zadeh A (2016) Ultrasound in cancer treatment through nanotechnology. J Biomed Phys Eng 6:123–126. https://doi.org/10.3389/fbioe.2019.00324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiss AA, Geertman R, Wierschem M, Skiborowski M, Gielen B, Jordens J, John JJ, Van Gerven T (2018) Ultrasound-assisted emerging technologies for chemical processes. J Chem Technol Biotechnol 93:1219–1227. https://doi.org/10.1002/jctb.5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaur N (2018) Synthesis of six- and seven-membered heterocycles under ultrasound irradiation. Synth Commun 48:1–24. https://doi.org/10.1080/00397911.2018.1434894

    Article  CAS  Google Scholar 

  27. Chatel G, Varma RS (2019) Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to Green Chemistry. Green Chem 21:6043–6050. https://doi.org/10.1039/C9GC02534K

    Article  CAS  Google Scholar 

  28. Beyzaei H, Khosravi Z, Aryan R, Ghasemi B (2019) A green one-pot synthesis of 3(5)-substituted 1,2,4-triazol-5(3)-amines as potential antimicrobial agents. J Iran Chem Soc 16:2565–2573. https://doi.org/10.1007/s13738-019-01714-2

    Article  CAS  Google Scholar 

  29. Heravi MM, Ghavidel M, Mohammadkhani L (2018) Beyond a solvent: triple roles of dimethylformamide in organic chemistry. RSC Adv 8:27832–27862. https://doi.org/10.1039/c8ra04985h

    Article  CAS  Google Scholar 

  30. Turukarabettu V, Kalluraya B (2020) Synthetic and theoretical investigation on nano-Au/TiO2 catalyzed hydrothiolation for construction of C–S bond: experimental and DFT study. J Phys Org Chem 33:E4040. https://doi.org/10.1002/poc.4040

    Article  CAS  Google Scholar 

  31. Li P, Shi L, Gao MN, Yang X, Xue W, Jin LH, Hu DY, Song BA (2015) Antibacterial activities against rice bacterial leaf blight and tomato bacterial wilt of 2-mercapto-5-substituted-1,3,4-oxadiazole/thiadiazole derivatives. Bioorg Med Chem Lett 25:481–484. https://doi.org/10.1016/j.bmcl.2014.12.038

    Article  CAS  PubMed  Google Scholar 

  32. Suman B (1979) 5-Substituted-1,3,4-oxadiazoles and related compounds as possible fungicides. J Indian Chem Soc 56:712–715

    CAS  Google Scholar 

  33. Shawali AS, Rizk MS, Abdelhamid AO, Abdalla MA, Parkanyi C, Wojciechowska ME (1983) The acidities and the tautomeric structure of 5-aryl-2-mercapto-1,3,4-oxadiazoles. Heterocycles 20:2211–2224. https://doi.org/10.3987/R-1983-11-2211

    Article  CAS  Google Scholar 

  34. Kahl DJ, Hutchings KM, Lisabeth EM, Haak AJ, Leipprandt JR, Dexheimer T, Khanna D, Tsou PS, Campbell PL, Fox DA, Wen B, Sun D, Bailie M, Neubig RR, Larsen SD (2019) 5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic acids: a highly potent new class of inhibitors of Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF)-mediated gene transcription as potential antifibrotic agents for scleroderma. J Med Chem 62:4350–4369. https://doi.org/10.1021/acs.jmedchem.8b01772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karabanovich G, Zemanová J, Smutný T, Székely R, Šarkan M, Centárová I, Vocat A, Pávková I, Čonka P, Němeček J, Stolaříková J, Vejsová M, Vávrová K, Klimešová V, Hrabálek A, Pávek P, Cole ST, Mikušová K, Roh J (2016) Development of 3,5-dinitrobenzylsulfanyl-1,3,4-oxadiazoles and thiadiazoles as selective antitubercular agents active against replicating and nonreplicating Mycobacterium tuberculosis. J Med Chem 59:2362–2380. https://doi.org/10.1021/acs.jmedchem.5b00608

    Article  CAS  PubMed  Google Scholar 

  36. Du QR, Li DD, Pi YZ, Li JR, Sun J, Fang F, Zhong WQ, Gong HB, Zhu HL (2013) Novel 1,3,4-oxadiazole thioether derivatives targeting thymidylate synthase as dual anticancer/antimicrobial agents. Bioorg Med Chem 21:2286–2297. https://doi.org/10.1016/j.bmc.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  37. Rasool S, Aziz-ur-Rehman Abbasi MA, Gul S, Akhtar MN, Ahmad I, Afzal S (2016) Synthesis, characterization and biological evaluation of N′-substituted-2-(5-(4-substitutedphenyl)-1,3,4-oxadiazol-2-ylthio)acetohydrazide derivatives. J Chem Soc Pak 38:80–90. https://doi.org/10.4314/tjpr.v14i6.21

    Article  CAS  Google Scholar 

  38. Khanam R, Ahmad K, Hejazi II, Siddique IA, Kumar V, Bhat AR, Azam A, Athar F (2017) Inhibitory growth evaluation and apoptosis induction in MCF-7 cancer cells by new 5-aryl-2-butylthio-1,3,4-oxadiazole derivatives. Cancer Chemother Pharmacol 80:1027–1042. https://doi.org/10.1007/s00280-017-3414-6

    Article  CAS  PubMed  Google Scholar 

  39. Fallah A, Mohanazadeh F, Safavi M (2020) Design, synthesis, and in vitro evaluation of novel 1,3,4-oxadiazolecarbamothioate derivatives of Rivastigmine as selective inhibitors of BuChE. Med Chem Res 29:341–355. https://doi.org/10.1007/s00044-019-02475-6

    Article  CAS  Google Scholar 

  40. Rai G, Kenyon V, Jadhav A, Schultz L, Armstrong M, Jameson JB, Hoobler E, Leister W, Simeonov A, Holman TR, Maloney DJ (2010) Discovery of potent and selective inhibitors of human reticulocyte 15-lipoxygenase-1. J Med Chem 53:7392–7404. https://doi.org/10.1021/jm1008852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Liu XH, Zhan YZ, Zhang LY, Li ZM, Li YH, Zhang X, Wang BL (2016) Synthesis and biological activities of novel 5-substituted-1,3,4-oxadiazole Mannich bases and bis-Mannich bases as ketol-acid reductoisomerase inhibitors. Bioorg Med Chem Lett 26:4661–4665. https://doi.org/10.1016/j.bmcl.2016.08.059

    Article  CAS  PubMed  Google Scholar 

  42. Grzyb JA, Dekeyser MA, Batey RA (2005) Parallel synthesis of a library of acylsemicarbazides using a solution-phase one-pot method and their evaluation as crop-protection agents. Synthesis 14:2384–2392. https://doi.org/10.1055/s-2005-870020

    Article  CAS  Google Scholar 

  43. Xu WM, Li SZ, He M, Yang S, Li XY, Li P (2013) Synthesis and bioactivities of novel thioether/sulfone derivatives containing 1,2,3-thiadiazole and 1,3,4-oxadiazole/thiadiazole moiety. Bioorg Med Chem Lett 23:5821–5824. https://doi.org/10.1016/j.bmcl.2013.08.107

    Article  CAS  PubMed  Google Scholar 

  44. Claramunt RM, López C, Santa María MD, Sanz D, Elguero J (2006) The use of NMR spectroscopy to study tautomerism. Prog Nucl Magn Reson Spectrosc 49:169–206. https://doi.org/10.1002/chin.200711279

    Article  CAS  Google Scholar 

  45. Weis AL (1985) Recent advances in the chemistry of dihydroazines. In: Katritzky AR (ed) Advances in heterocyclic chemistry, vol 38, 1st edn. Elsevier Science, Burlington, pp 1–103

    Google Scholar 

  46. Torres AM, Price WS (2017) Common problems and artifacts encountered in solution-state NMR experiments. Consepts Magn Reson Part A 45A:e21387. https://doi.org/10.1002/cmr.a.21387

    Article  CAS  Google Scholar 

  47. Gökce H, Öztürk N, Ceylan Ü, Alpaslan YB, Alpaslan G (2016) Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV–Vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule. Spectrochim Acta, Part A 163:170–180. https://doi.org/10.1016/j.saa.2016.03.041

    Article  CAS  Google Scholar 

  48. Li Z, Liu Y, Bai X, Deng Q, Wang J, Zhang G, Xiao C, Mei Y, Wang Y (2015) SAR studies on 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles as inhibitors of Mtb shikimate dehydrogenase for the development of novel antitubercular agents. RSC Adv 5:97089–97101. https://doi.org/10.1039/C5RA19334F

    Article  CAS  Google Scholar 

  49. Yan X, Zhou S, Wang Y, Ge Z, Cheng T, Li R (2012) Propylene oxide assisted one-pot, tandem synthesis of substituted-1,3,4-oxadiazole-2(3H)-ones in water. Tetrahedron 68:7978–7983. https://doi.org/10.1002/chin.201305104

    Article  CAS  Google Scholar 

  50. Aryanasab F, Maleki H, Saidi MR (2011) A novel one-pot synthesis of 2-alkylthio-1,3,4-oxadiazoles in water. J Iran Chem Soc 8:525–530. https://doi.org/10.1007/BF03249086

    Article  CAS  Google Scholar 

  51. Mishra CB, Mongre RK, Kumari S, Jeong DK, Tiwari M (2017) Novel triazole–piperazine hybrid molecules induce apoptosis via activation of the mitochondrial pathway and exhibit antitumor efficacy in osteosarcoma xenograft nude mice model. ACS Chem Biol 12:753–768. https://doi.org/10.1021/acschembio.6b01007

    Article  CAS  PubMed  Google Scholar 

  52. Soleiman-Beigi M, Alikarami M, Hosseinzadeh T (2013) One-pot synthesis of 2-alkylthio-1,3,4-oxadiazole and bis-(1,3,4-oxadiazole-2-yl)thio alkyl derivatives from acid hydrazides and CS2. Asian J Chem 25:4939–4942. https://doi.org/10.14233/ajchem.2013.14148

    Article  CAS  Google Scholar 

  53. Jha KK, Samad A, Kumar Y, Shaharyar M, Khosa RL, Jain J, Kumar V, Singh P (2010) Design, synthesis and biological evaluation of 1,3,4-oxadiazole derivatives. Eur J Med Chem 45:4963–4967. https://doi.org/10.1016/j.ejmech.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  54. Bhat KS, Karthikeyan M, Holla BS, Shetty NS (2004) Synthesis of some new fluorine containing 1,3,4-oxadiazole derivatives as potential antibacterial and anticancer agents. Ind J Chem 43B:1765–1769

    CAS  Google Scholar 

  55. Ahmed MN, Yasin KA, Hameed S, Ayub K, Haq IU, Tahir MN, Mahmood T (2017) Synthesis, structural studies and biological activities of three new 2-(pentadecylthio)-5-aryl-1,3,4-oxadiazoles. J Mol Struct 1129:50–59. https://doi.org/10.1016/j.molstruc.2016.09.057

    Article  CAS  Google Scholar 

  56. Desai N, Dodiya AM, Rajpara KM, Rupala YM (2014) Synthesis and antimicrobial screening of 1,3,4-oxadiazole and clubbed thiophene derivatives. J Saudi Chem Soc 18:255–261. https://doi.org/10.1016/j.jscs.2011.06.020

    Article  CAS  Google Scholar 

  57. Ramadan DT, Ali MAM, Yahya SM, El-Sayed WM (2019) Correlation between antioxidant/antimutagenic and antiproliferative activity of some phytochemicals anticancer agents. Med Chem 19:1481–1490. https://doi.org/10.2174/1871520619666190528091648

    Article  CAS  Google Scholar 

  58. Kleinrichert K, Alappa B (2019) Comparative analysis of antioxidant and anti-amyloidogenic properties of various polyphenol rich phytoceutical extracts. Antioxidants (Basel) 8:13. https://doi.org/10.3390/antiox8010013

    Article  CAS  Google Scholar 

  59. Dehghan H, Sarrafi Y, Salehi P (2016) Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region. Iran J Food Drug Anal 24:179–188. https://doi.org/10.1016/j.jfda.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  60. Diaz P, Jeong SC, Lee S, Khoo C, Koyyalamudi SR (2012) Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds. Chin Med 7:26. https://doi.org/10.1186/1749-8546-7-26

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mohana KN, Pradeep Kumar CB (2013) Synthesis and antioxidant activity of 2-amino-5-methylthiazol derivatives containing 1,3,4-oxadiazole-2-thiol moiety. Int Schol Res Not 2013:620718. https://doi.org/10.1155/2013/620718

    Article  CAS  Google Scholar 

  62. Sauer AC, Leal JG, Stefanello ST, Leite MTB, Souza MB, Soares FAA, Rodrigues OED, Dornelles L (2017) Synthesis and antioxidant properties of organosulfur and organoselenium compounds derived from 5-substituted-1,3,4-oxadiazole/thiadiazole-2-thiols. Tetrahedron Lett 58:87–91. https://doi.org/10.1016/j.tetlet.2016.11.106

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by University of Zabol (Grant No. UOZ-GR-9618-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Beyzaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarmohammadi, E., Beyzaei, H., Aryan, R. et al. Ultrasound-assisted, low-solvent and acid/base-free synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols as potent antimicrobial and antioxidant agents. Mol Divers 25, 2367–2378 (2021). https://doi.org/10.1007/s11030-020-10125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10125-y

Keywords

Navigation