Skip to main content

Advertisement

Log in

Non-coding RNAS and colorectal cancer liver metastasis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

More than 50% of colorectal cancer (CRC) deaths are attributed to metastasis, and the liver is the most common distant metastatic site of CRC. The molecular mechanisms underlying CRC liver metastasis are very complicated and remain largely unknown. Accumulated evidence has shown that non-coding RNAs (NcRNAs) play critical roles in tumor development and progression. Here we reviewed the roles and underlying mechanisms of NcRNAs in CRC liver metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ferlay J, Shin H-R, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917. https://doi.org/10.1002/ijc.25516

    Article  CAS  Google Scholar 

  2. Scholefield JH, Steele RJ (2002) Guidelines for follow up after resection of colorectal cancer. Gut 51(Suppl 5):V3–5. https://doi.org/10.1136/gut.51.suppl_5.v3

    Article  Google Scholar 

  3. Yamashita S, Chun YS, Kopetz SE, Vauthey J-N (2018) Biomarkers in colorectal liver metastases. Br J Surg 105:618–627. https://doi.org/10.1002/bjs.10834

    Article  CAS  Google Scholar 

  4. Tsitskari M, Filippiadis D, Kostantos C et al (2019) The role of interventional oncology in the treatment of colorectal cancer liver metastases. Ann Gastroenterol 32:147–155. https://doi.org/10.20524/aog.2018.0338

    Article  Google Scholar 

  5. Van Cutsem E, Cervantes A, Adam R et al (2016) ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol Off J Eur Soc Med Oncol 27:1386–1422. https://doi.org/10.1093/annonc/mdw235

    Article  Google Scholar 

  6. Wang J-P, Tang Y-Y, Fan C-M et al (2018) The role of exosomal non-coding RNAs in cancer metastasis. Oncotarget 9:12487–12502. https://doi.org/10.18632/oncotarget.23552

    Article  Google Scholar 

  7. Klingenberg M, Matsuda A, Diederichs S, Patel T (2017) Non-coding RNA in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets. J Hepatol 67:603–618. https://doi.org/10.1016/j.jhep.2017.04.009

    Article  CAS  Google Scholar 

  8. Li P-F, Chen S-C, Xia T et al (2014) Non-coding RNAs and gastric cancer. World J Gastroenterol 20:5411–5419. https://doi.org/10.3748/wjg.v20.i18.5411

    Article  CAS  Google Scholar 

  9. Zhang X, Ma X, Jing S et al (2018) Non-coding RNAs and retroviruses. Retrovirology 15:20. https://doi.org/10.1186/s12977-018-0403-8

    Article  CAS  Google Scholar 

  10. Li P, Ou Q, Braciak TA et al (2018) MicroRNA-192-5p is a predictive biomarker of survival for Stage IIIB colon cancer patients. Jpn J Clin Oncol 48:619–624. https://doi.org/10.1093/jjco/hyy019

    Article  Google Scholar 

  11. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. https://doi.org/10.1101/gr.082701.108

    Article  CAS  Google Scholar 

  12. Bartel DP (2018) Metazoan MicroRNAs. Cell 173:20–51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  Google Scholar 

  13. Markopoulos GS, Roupakia E, Tokamani M et al (2017) A step-by-step microRNA guide to cancer development and metastasis. Cell Oncol (Dordr) 40:303–339. https://doi.org/10.1007/s13402-017-0341-9

    Article  CAS  Google Scholar 

  14. Xin Z, Ma Q, Ren S et al (2017) The understanding of circular RNAs as special triggers in carcinogenesis. Brief Funct Genomics 16:80–86. https://doi.org/10.1093/bfgp/elw001

    Article  CAS  Google Scholar 

  15. Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73:3852–3856. https://doi.org/10.1073/pnas.73.11.3852

    Article  CAS  Google Scholar 

  16. Chen L-L (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211. https://doi.org/10.1038/nrm.2015.32

    Article  CAS  Google Scholar 

  17. Hao S, Cong L, Qu R et al (2019) Emerging roles of circular RNAs in colorectal cancer. Onco Targets Ther 12:4765–4777. https://doi.org/10.2147/OTT.S208235

    Article  CAS  Google Scholar 

  18. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. https://doi.org/10.1038/nature11993

    Article  CAS  Google Scholar 

  19. Wu J, Qi X, Liu L et al (2019) Emerging epigenetic regulation of circular RNAs in human cancer. Mol Ther Nucleic Acids 16:589–596. https://doi.org/10.1016/j.omtn.2019.04.011

    Article  CAS  Google Scholar 

  20. Zhao X, Cai Y, Xu J (2019) Circular RNAs: biogenesis, mechanism, and function in human cancers. Int J Mol Sci. https://doi.org/10.3390/ijms20163926

    Article  Google Scholar 

  21. Wilusz JE (2018) A 360° view of circular RNAs: from biogenesis to functions. Wiley Interdiscip Rev RNA 9:e1478. https://doi.org/10.1002/wrna.1478

    Article  CAS  Google Scholar 

  22. Rashid F, Shah A, Shan G (2016) Long non-coding RNAs in the cytoplasm. Genom Proteomics Bioinform 14:73–80. https://doi.org/10.1016/j.gpb.2016.03.005

    Article  Google Scholar 

  23. He J-H, Han Z-P, Li Y-G (2014) Association between long non-coding RNA and human rare diseases (review). Biomed Rep 2:19–23. https://doi.org/10.3892/br.2013.191

    Article  CAS  Google Scholar 

  24. Ip JY, Nakagawa S (2012) Long non-coding RNAs in nuclear bodies. Dev Growth Differ 54:44–54. https://doi.org/10.1111/j.1440-169X.2011.01303.x

    Article  CAS  Google Scholar 

  25. Dahariya S, Paddibhatla I, Kumar S et al (2019) Long non-coding RNA: classification, biogenesis and functions in blood cells. Mol Immunol 112:82–92. https://doi.org/10.1016/j.molimm.2019.04.011

    Article  CAS  Google Scholar 

  26. Wu H, Yang L, Chen L-L (2017) The diversity of long noncoding RNAs and their generation. Trends Genet 33:540–552. https://doi.org/10.1016/j.tig.2017.05.004

    Article  CAS  Google Scholar 

  27. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. https://doi.org/10.1101/gr.132159.111

    Article  CAS  Google Scholar 

  28. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  Google Scholar 

  29. He Y, Meng X-M, Huang C et al (2014) Long noncoding RNAs: novel insights into hepatocelluar carcinoma. Cancer Lett 344:20–27. https://doi.org/10.1016/j.canlet.2013.10.021

    Article  CAS  Google Scholar 

  30. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323. https://doi.org/10.1016/j.cell.2007.05.022

    Article  CAS  Google Scholar 

  31. Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419. https://doi.org/10.1016/j.cell.2010.06.040

    Article  CAS  Google Scholar 

  32. Azzalin CM, Reichenbach P, Khoriauli L et al (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801. https://doi.org/10.1126/science.1147182

    Article  CAS  Google Scholar 

  33. Nagano T, Mitchell JA, Sanz LA et al (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–1720. https://doi.org/10.1126/science.1163802

    Article  CAS  Google Scholar 

  34. Lee JT (2010) The X as model for RNA’s niche in epigenomic regulation. Cold Spring Harb Perspect Biol 2:a003749. https://doi.org/10.1101/cshperspect.a003749

    Article  CAS  Google Scholar 

  35. Kotake Y, Nakagawa T, Kitagawa K et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30:1956–1962. https://doi.org/10.1038/onc.2010.568

    Article  CAS  Google Scholar 

  36. Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246. https://doi.org/10.1016/j.molcel.2008.08.022

    Article  CAS  Google Scholar 

  37. Wang D, Liu J, Huo T et al (2017) The role of microRNAs in colorectal liver metastasis: important participants and potential clinical significances. Tumour Biol J Int Soc Oncodevelopmental Biol Med 39:1010428317709640. https://doi.org/10.1177/1010428317709640

    Article  CAS  Google Scholar 

  38. Mohammadi A, Mansoori B, Baradaran B (2016) The role of microRNAs in colorectal cancer. Biomed Pharmacother 84:705–713. https://doi.org/10.1016/j.biopha.2016.09.099

    Article  CAS  Google Scholar 

  39. Ding M, Zhang T, Li S et al (2017) Correlation analysis between liver metastasis and serum levels of miR-200 and miR-141 in patients with colorectal cancer. Mol Med Rep 16:7791–7795. https://doi.org/10.3892/mmr.2017.7538

    Article  CAS  Google Scholar 

  40. Yu H, Shen Y, Hong J et al (2015) The contribution of TGF-β in epithelial-mesenchymal transition (EMT): down-regulation of E-cadherin via snail. Neoplasma 62:1–15. https://doi.org/10.4149/neo_2015_002

    Article  CAS  Google Scholar 

  41. Liu Y, Zhang Y, Wu H et al (2017) miR-10a suppresses colorectal cancer metastasis by modulating the epithelial-to-mesenchymal transition and anoikis. Cell Death Dis 8:e2739. https://doi.org/10.1038/cddis.2017.61

    Article  CAS  Google Scholar 

  42. Li J, Xia L, Zhou Z et al (2018) MiR-186-5p upregulation inhibits proliferation, metastasis and epithelial-to-mesenchymal transition of colorectal cancer cell by targeting ZEB1. Arch Biochem Biophys 640:53–60. https://doi.org/10.1016/j.abb.2018.01.002

    Article  CAS  Google Scholar 

  43. Li J, Chen Y, Guo X et al (2016) Inhibition of miR-15b decreases cell migration and metastasis in colorectal cancer. Tumour Biol J Int Soc Oncodevelopmental Biol Med 37:8765–8773. https://doi.org/10.1007/s13277-015-4396-9

    Article  CAS  Google Scholar 

  44. Asangani IA, Rasheed SAK, Nikolova DA et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136. https://doi.org/10.1038/sj.onc.1210856

    Article  CAS  Google Scholar 

  45. Zhu W, Luo X, Fu H et al (2019) MiR-3653 inhibits the metastasis and epithelial-mesenchymal transition of colon cancer by targeting Zeb2. Pathol Res Pract 215:152577. https://doi.org/10.1016/j.prp.2019.152577

    Article  CAS  Google Scholar 

  46. Hong S, Yan Z, Wang H et al (2019) Up-regulation of microRNA-497-5p inhibits colorectal cancer cell proliferation and invasion via targeting PTPN3. Biosci Rep. https://doi.org/10.1042/BSR20191123

    Article  Google Scholar 

  47. Xie Y, Zhao J, Liang Y et al (2019) MicroRNA-10b controls the metastasis and proliferation of colorectal cancer cells by regulating Krüppel-like factor 4. Artif Cells Nanomed Biotechnol 47:1722–1729. https://doi.org/10.1080/21691401.2019.1606006

    Article  CAS  Google Scholar 

  48. Mokutani Y, Uemura M, Munakata K et al (2016) Down-regulation of microRNA-132 is associated with poor prognosis of colorectal cancer. Ann Surg Oncol 23:599–608. https://doi.org/10.1245/s10434-016-5133-3

    Article  Google Scholar 

  49. Chen D-L, Wang Z-Q, Zeng Z-L et al (2014) Identification of microRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression. Hepatology 60:598–609. https://doi.org/10.1002/hep.27118

    Article  CAS  Google Scholar 

  50. Bleau A-M, Redrado M, Nistal-Villan E et al (2018) miR-146a targets c-met and abolishes colorectal cancer liver metastasis. Cancer Lett 414:257–267. https://doi.org/10.1016/j.canlet.2017.11.008

    Article  CAS  Google Scholar 

  51. Li W, Chang J, Wang S et al (2015) miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget 6:24448–24462. https://doi.org/10.18632/oncotarget.4423

    Article  Google Scholar 

  52. Ji D, Chen Z, Li M et al (2014) MicroRNA-181a promotes tumor growth and liver metastasis in colorectal cancer by targeting the tumor suppressor WIF-1. Mol Cancer 13:86. https://doi.org/10.1186/1476-4598-13-86

    Article  CAS  Google Scholar 

  53. Guo L, Fu J, Sun S et al (2019) MicroRNA-143-3p inhibits colorectal cancer metastases by targeting ITGA6 and ASAP3. Cancer Sci 110:805–816. https://doi.org/10.1111/cas.13910

    Article  CAS  Google Scholar 

  54. Hata T, Mokutani Y, Takahashi H et al (2017) Identification of microRNA-487b as a negative regulator of liver metastasis by regulation of KRAS in colorectal cancer. Int J Oncol 50:487–496. https://doi.org/10.3892/ijo.2016.3813

    Article  CAS  Google Scholar 

  55. Xu X-W, Zheng B-A, Hu Z-M et al (2017) Circular RNA hsa_circ_000984 promotes colon cancer growth and metastasis by sponging miR-106b. Oncotarget 8:91674–91683. https://doi.org/10.18632/oncotarget.21748

    Article  Google Scholar 

  56. Geng Y, Zheng X, Hu W et al (2019) Hsa_circ_0009361 acts as the sponge of miR-582 to suppress colorectal cancer progression by regulating APC2 expression. Clin Sci (Lond) 133:1197–1213. https://doi.org/10.1042/CS20190286

    Article  CAS  Google Scholar 

  57. Xu H, Wang C, Song H et al (2019) RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers. Mol Cancer 18:8

    Article  Google Scholar 

  58. Chen L-Y, Zhi Z, Wang L et al (2019) NSD2 circular RNA promotes metastasis of colorectal cancer by targeting miR-199b-5p-mediated DDR1 and JAG1 signalling. J Pathol 248:103–115. https://doi.org/10.1002/path.5238

    Article  CAS  Google Scholar 

  59. Yong W, Zhuoqi X, Baocheng W et al (2018) Hsa_circ_0071589 promotes carcinogenesis via the miR-600/EZH2 axis in colorectal cancer. Biomed Pharmacother 102:1188–1194. https://doi.org/10.1016/j.biopha.2018.03.085

    Article  CAS  Google Scholar 

  60. Zheng X, Chen L, Zhou Y et al (2019) A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer 18:47. https://doi.org/10.1186/s12943-019-1010-6

    Article  Google Scholar 

  61. Hsiao K-Y, Lin Y-C, Gupta SK et al (2017) Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res 77:2339–2350. https://doi.org/10.1158/0008-5472.CAN-16-1883

    Article  CAS  Google Scholar 

  62. Li X, Wang J, Zhang C et al (2018) Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7. J Pathol 246:166–179. https://doi.org/10.1002/path.5125

    Article  CAS  Google Scholar 

  63. Chen D-L, Lu Y-X, Zhang J-X et al (2017) Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression. Theranostics 7:4836–4849. https://doi.org/10.7150/thno.20942

    Article  CAS  Google Scholar 

  64. Ye L, Ren L, Qiu J et al (2015) Aberrant expression of long noncoding RNAs in colorectal cancer with liver metastasis. Tumour Biol J Int Soc Oncodevelopmental Biol Med 36:8747–8754. https://doi.org/10.1007/s13277-015-3627-4

    Article  CAS  Google Scholar 

  65. Huang L, Lin H, Kang L et al (2019) Aberrant expression of long noncoding RNA SNHG15 correlates with liver metastasis and poor survival in colorectal cancer. J Cell Physiol 234:7032–7039. https://doi.org/10.1002/jcp.27456

    Article  CAS  Google Scholar 

  66. Wang Y, Lu Z, Wang N et al (2018) Long noncoding RNA DANCR promotes colorectal cancer proliferation and metastasis via miR-577 sponging. Exp Mol Med 50:1–17. https://doi.org/10.1038/s12276-018-0082-5

    Article  CAS  Google Scholar 

  67. Fellig Y, Ariel I, Ohana P et al (2005) H19 expression in hepatic metastases from a range of human carcinomas. J Clin Pathol 58:1064–1068. https://doi.org/10.1136/jcp.2004.023648

    Article  CAS  Google Scholar 

  68. Cai Y, Yan P, Zhang G et al (2018) Long non-coding RNA TP73-AS1 sponges miR-194 to promote colorectal cancer cell proliferation, migration and invasion via up-regulating TGFα. Cancer Biomark 23:145–156. https://doi.org/10.3233/CBM-181503

    Article  CAS  Google Scholar 

  69. Di W, Weinan X, Xin L et al (2019) Long noncoding RNA SNHG14 facilitates colorectal cancer metastasis through targeting EZH2-regulated EPHA7. Cell Death Dis 10:514. https://doi.org/10.1038/s41419-019-1707-x

    Article  Google Scholar 

  70. Jia G-Q, Zhang M-M, Wang K et al (2018) Long non-coding RNA PlncRNA-1 promotes cell proliferation and hepatic metastasis in colorectal cancer. J Cell Biochem 119:7091–7104. https://doi.org/10.1002/jcb.27031

    Article  CAS  Google Scholar 

  71. Spaderna S, Schmalhofer O, Hlubek F et al (2006) A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131:830–840. https://doi.org/10.1053/j.gastro.2006.06.016

    Article  CAS  Google Scholar 

  72. Lin M-T, Song H-J, Ding X-Y (2018) Long non-coding RNAs involved in metastasis of gastric cancer. World J Gastroenterol 24:3724–3737. https://doi.org/10.3748/wjg.v24.i33.3724

    Article  CAS  Google Scholar 

  73. Cao H, Xu E, Liu H et al (2015) Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract 211:557–569. https://doi.org/10.1016/j.prp.2015.05.010

    Article  CAS  Google Scholar 

  74. Cui F, Wang S, Lao I et al (2016) miR-375 inhibits the invasion and metastasis of colorectal cancer via targeting SP1 and regulating EMT-associated genes. Oncol Rep 36:487–493. https://doi.org/10.3892/or.2016.4834

    Article  CAS  Google Scholar 

  75. Zhu L, Chen H, Zhou D et al (2012) MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol 29:1037–1043. https://doi.org/10.1007/s12032-011-9975-z

    Article  CAS  Google Scholar 

  76. Shelton PM, Duran A, Nakanishi Y et al (2018) The Secretion of miR-200s by a PKCζ/ADAR2 signaling axis promotes liver metastasis in colorectal cancer. Cell Rep 23:1178–1191. https://doi.org/10.1016/j.celrep.2018.03.118

    Article  CAS  Google Scholar 

  77. Chen R-X, Chen X, Xia L-P et al (2019) N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun 10:4695. https://doi.org/10.1038/s41467-019-12651-2

    Article  CAS  Google Scholar 

  78. Li Y, Zhao Z, Xu C et al (2014) HMGA2 induces transcription factor Slug expression to promote epithelial-to-mesenchymal transition and contributes to colon cancer progression. Cancer Lett 355:130–140. https://doi.org/10.1016/j.canlet.2014.09.007

    Article  CAS  Google Scholar 

  79. Fodde R, Brabletz T (2007) Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19:150–158. https://doi.org/10.1016/j.ceb.2007.02.007

    Article  CAS  Google Scholar 

  80. Tam C, Wong JH, Tsui SKW et al (2019) LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol 103:4649–4677. https://doi.org/10.1007/s00253-019-09837-5

    Article  CAS  Google Scholar 

  81. Chen D, Sun Q, Cheng X et al (2016) Genome-wide analysis of long noncoding RNA (lncRNA) expression in colorectal cancer tissues from patients with liver metastasis. Cancer Med 5:1629–1639. https://doi.org/10.1002/cam4.738

    Article  CAS  Google Scholar 

  82. Khatri VP, Petrelli NJ, Belghiti J (2005) Extending the frontiers of surgical therapy for hepatic colorectal metastases: is there a limit? J Clin Oncol Off J Am Soc Clin Oncol 23:8490–8499. https://doi.org/10.1200/JCO.2004.00.6155

    Article  Google Scholar 

  83. Van Schaeybroeck S, Allen WL, Turkington RC, Johnston PG (2011) Implementing prognostic and predictive biomarkers in CRC clinical trials. Nat Rev Clin Oncol 8:222–232. https://doi.org/10.1038/nrclinonc.2011.15

    Article  CAS  Google Scholar 

  84. Oshima G, Guo N, He C et al (2017) In vivo delivery and therapeutic effects of a microRNA on colorectal liver metastases. Mol Ther 25:1588–1595. https://doi.org/10.1016/j.ymthe.2017.04.005

    Article  CAS  Google Scholar 

  85. Jiang T, Ye L, Han Z et al (2017) miR-19b-3p promotes colon cancer proliferation and oxaliplatin-based chemoresistance by targeting SMAD4: validation by bioinformatics and experimental analyses. J Exp Clin Cancer Res 36:131. https://doi.org/10.1186/s13046-017-0602-5

    Article  CAS  Google Scholar 

  86. Wang Q, Shi L, Shi K et al (2020) CircCSPP1 functions as a ceRNA to promote colorectal carcinoma cell EMT and liver metastasis by upregulating COL1A1. Front Oncol 10:850. https://doi.org/10.3389/fonc.2020.00850

    Article  CAS  Google Scholar 

  87. Shan Y, Ma J, Pan Y et al (2018) LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis 9:722. https://doi.org/10.1038/s41419-018-0759-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 81572424), Natural Science Foundation of Guangdong Province (Grant No. 2017A030313482), Guangzhou Municipal Science and Technology Project (Grant No. 201607010164), Scientific Research Project of Guangzhou Municipal Colleges and Universities (Grant No. 1201610322).

Author information

Authors and Affiliations

Authors

Contributions

X-YZ finished the manuscript and abstract; BL and Z-KJ consulted relevant literatures and completed English revision; Y-KX and F-CW completed the figures and tables; J-QH provided constructive feedback and guidance; J-SC completed critical revisions and proofread the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jing-Song Chen.

Ethics declarations

Competing interests

The authors declare no potential conflicts of interest.

Consent for publication

All authors agree to publish the article.

Ethical approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, XY., Luo, B., Jiang, ZK. et al. Non-coding RNAS and colorectal cancer liver metastasis. Mol Cell Biochem 475, 151–159 (2020). https://doi.org/10.1007/s11010-020-03867-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03867-8

Keywords

Navigation