Skip to main content
Log in

Ultra-High Damping Capacity of Oxide Reinforced Magnesium Matrix Composites by In Situ Synthesis

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, in situ oxidation and particle-dispersed methods are successfully used to prepare novel oxide/Mg composites with ultra-high damping capacity starting from pure Mg as the matrix. Successful incorporation of the MgO particles into the Mg matrix is experimentally demonstrated, and the role of the oxide in enhancing the damping capacities of the composites is examined in detail. The increased damping capacity of the composites with respect to the pure magnesium is attributed to an increased dislocation density and the introduction of interface damping. In the temperature-dependent damping tests, two damping peaks P1 and P2 were found. The P1 peak is considered to be related to the interaction between dislocations and impurity atoms or vacancies. The P2 peak is considered to be caused by the grain boundaries sliding.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.Y. Zhai, X.Y. Song, A.Y. Xu, Y.G. Chen, Q.K. Han, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00566-y

    Article  Google Scholar 

  2. V.V. Ramalingam, P. Ramasamy, M.D. Kovukkal, G. Myilsamy, Met. Mater. Int. 26, 409–430 (2020). https://doi.org/10.1007/s12540-019-00346-8

    Article  CAS  Google Scholar 

  3. S.R. Agnew, J.F. Nie, Scripta Mater. 63(7), 671–673 (2010). https://doi.org/10.1016/j.scriptamat.2010.06.029

    Article  CAS  Google Scholar 

  4. Y.J. Cui, Y.P. Li, S.H. Sun, H.K. Bian, H. Huang, Z.C. Wang, Y. Koizumi, A. Chiba, Scripta Mater. 101, 8–11 (2015). https://doi.org/10.1016/j.scriptamat.2015.01.002

    Article  CAS  Google Scholar 

  5. Z.S. Wu, J.F. Wang, H.B. Wang, S. Ma, S. Huang, S. li, F.S. Pan, J. Mater. Sci. Technol., 33(9) (2017), pp. 941–946. https://doi.org/10.1016/j.jmst.2016.06.027

  6. J.F. Wang, Z.S. Wu, S. Gao, R.P. Lu, D.Z. Qin, W.X. Yang, F.S. Pan, J. Magnes. Alloy. 3(1), 79–85 (2015). https://doi.org/10.1016/j.jma.2015.02.001

    Article  CAS  Google Scholar 

  7. N. Srikanth, X.L. Zhong, M. Gupta, Mater. Lett. 59(29–30), 3851–3855 (2005). https://doi.org/10.1016/j.matlet.2005.07.029

    Article  CAS  Google Scholar 

  8. W. Cao, C. Zhang, T. Fan, D. Zhang, Mater. Sci. Eng. A. 496(1–2), 242–246 (2008). https://doi.org/10.1016/j.msea.2008.06.032

    Article  CAS  Google Scholar 

  9. H. Abdizadeh, R. Ebrahimifard, M.A. Baghchesara, Compos. Part. B Eng. 56, 217–221 (2014). https://doi.org/10.1016/j.compositesb.2013.08.023

    Article  CAS  Google Scholar 

  10. C.S. Goh, M. Gupta, J. Wei, L.C. Lee, J. Compos. Mater. 41(19), 2325–2335 (2007). https://doi.org/10.1177/0021998307075445

    Article  CAS  Google Scholar 

  11. S.L. Zhang, Y.T. Zhao, G. Chen, T. Nonferr, Metal. Soc. 20, 2096–2099 (2010). https://doi.org/10.1016/S1003-6326(09)60424-6

    Article  CAS  Google Scholar 

  12. Z.Y. Zhang, Y.H. Guo, Y.T. Zhao, G. Chen, J.L. Wu, M.P. Liu, Mater. Charact. 150, 229–235 (2019). https://doi.org/10.1016/j.matchar.2019.02.024

    Article  CAS  Google Scholar 

  13. X. Wang, W. Wu, Y. Tang, X. Zeng, S. Yao, J. Alloy. Compd. 474, 499–504 (2009). https://doi.org/10.1016/j.jallcom.2008.06.122

    Article  CAS  Google Scholar 

  14. M. Zhang, Y. Yang, D. Wang, C. Song, J. Chen, Mater. Des. 165, 107583 (2019). https://doi.org/10.1016/j.matdes.2019.107583

    Article  CAS  Google Scholar 

  15. D. Chen, S. Kitipornchai, J. Yang, Mater. Des. 140, 473–487 (2018). https://doi.org/10.1016/j.matdes.2017.12.019

    Article  Google Scholar 

  16. A. Granato, K. Lücke, J. Appl. Phys. 27(6), 583–593 (1956). https://doi.org/10.1063/1.1722436

    Article  Google Scholar 

  17. A. Granato, K. Lücke, J. Appl. Phys. 27(7), 789–805 (1956). https://doi.org/10.1063/1.1722485

    Article  Google Scholar 

  18. X. Zhang, L. Liao, N. Ma, H. Wang, Compos. Part. A 37, 2011–2016 (2006). https://doi.org/10.1016/j.compositesa.2005.12.007

    Article  CAS  Google Scholar 

  19. X. Zhang, H. Wang, L. Liao, N. Ma, Compos. Sci. Technol. 67(3–4), 720–727 (2007). https://doi.org/10.1016/j.compscitech.2006.04.010

    Article  CAS  Google Scholar 

  20. L. Liao, X. Zhang, X. Li, H. Wang, N. Ma, Mater. Lett. 61(1), 231–234 (2007). https://doi.org/10.1016/j.matlet.2006.04.038

    Article  CAS  Google Scholar 

  21. Z. Trojanová, Z. Drozd, P. Minárik, P. Lukáč, A. Kasakewitsch, Thermochim. Acta 644, 69–75 (2016). https://doi.org/10.1016/j.tca.2016.10.010

    Article  CAS  Google Scholar 

  22. L.P. Fu, H.Z. Gu, A. Huang, M.J. Zhang, J.F. Wu, Ceram. Int. 46, 959–967 (2020). https://doi.org/10.1016/j.ceramint.2019.09.057

    Article  CAS  Google Scholar 

  23. J. Zhang, R. Perez, C. Wong, E.J. Lavernia, Mater. Sci. Eng. R 13(8), 325–389 (1994). https://doi.org/10.1016/0927-796x(94)90010-8

    Article  Google Scholar 

  24. C.F. Zhang, T.X. Fan, W. Cao, D. Zhang, Mater. Sci. Eng. A 508(1–2), 190–194 (2009). https://doi.org/10.1016/j.msea.2009.01.060

    Article  CAS  Google Scholar 

  25. Y.J. Zhang, N.H. Ma, H.W. Wang, Mater. Lett. 61(14–15), 3273–3275 (2007). https://doi.org/10.1016/j.matlet.2006.11.052

    Article  CAS  Google Scholar 

  26. G. Schoeck, Phys. Status Solidi B 32(2), 651–658 (1969). https://doi.org/10.1002/pssb.19690320216

    Article  CAS  Google Scholar 

  27. G. Schoeck, E. Bisogni, Phys. Status. Solidi B 32(1), 31–40 (1969). https://doi.org/10.1002/pssb.19690320104

    Article  CAS  Google Scholar 

  28. Z.K. Xie, M. Tane, S.K. Hyun, Y. Okuda, H. Nakajima, Mater. Sci. Eng. A 417, 129–133 (2006). https://doi.org/10.1016/j.msea.2005.10.061

    Article  CAS  Google Scholar 

  29. I.S. Golovin, H.R. Sinning, Mater. Sci. Eng. A 370, 504–511 (2004). https://doi.org/10.1016/j.msea.2003.08.083

    Article  CAS  Google Scholar 

  30. I.S. Golovin, H.R. Sinning, I.K. Arhipov, S.A. Golvin, M. Bram, Mater. Sci. Eng. A 370, 531–536 (2004). https://doi.org/10.1016/j.msea.2003.08.089

    Article  CAS  Google Scholar 

  31. Q. Li, G. Jiang, J. Dong, J.W. Hou, G. He, J. Alloy. Compd. 680, 522–530 (2016). https://doi.org/10.1016/j.jallcom.2016.04.101

    Article  CAS  Google Scholar 

  32. X.S. Hu, Y.K. Zhang, M.Y. Zheng, K. Wu, Scripta Mater. 52, 1141–1145 (2005). https://doi.org/10.1016/j.scriptamat.2005.01.048

    Article  CAS  Google Scholar 

  33. X.S. Hu, X.J. Wang, X.D. He, K. Wu, M.Y. Zheng, T. Nonferr, Met. Soc. 22, 1907–1911 (2012). https://doi.org/10.1016/s1003-6326(11)61406-4

    Article  CAS  Google Scholar 

  34. D.Q. Wan, J.C. Wang, Rare Met. Mater. Eng. 10, 2790–2793 (2017). https://doi.org/10.1016/S1875-5372(18)30008-0

    Article  Google Scholar 

  35. T.S. Kê, Phys. Rev. 71, 533–546 (1947). https://doi.org/10.1103/PhysRev.71.533

    Article  Google Scholar 

  36. Y.T. Tang, C. Zhang, L.B. Ren, W. Yang, D.D. Yin, G.H. Huang, H. Zhou, Y.B. Zhang, J. Magnes. Alloy. 7(3), 522–528 (2019). https://doi.org/10.1016/j.jma.2019.05.003

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Grant Number 51665012]; the Jiangxi province Science Foundation for Outstanding Scholarship [Grant Number 20171BCB23061, 2018ACB21020]; and the Primary Research & Development Plan of Jiang Xi Province [Grant Number 2019BBEL50019].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diqing Wan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, D., Hu, J., Wang, H. et al. Ultra-High Damping Capacity of Oxide Reinforced Magnesium Matrix Composites by In Situ Synthesis. Met. Mater. Int. 27, 5399–5406 (2021). https://doi.org/10.1007/s12540-020-00834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00834-2

Keywords

Navigation