Skip to main content
Log in

Effect of intralaminar hybridization on mode I fracture toughness of natural fiber-reinforced composites

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The main objective of this work was to investigate the effect of intralaminar hybridization on the mode I fracture toughness of epoxy composites based on jute and sisal fabrics. Four types of composites were produced by the hand layup technique: sisal (S), sisal + curauá (S + C), jute (J) and jute + curauá (J + C). Double cantilever beam (DCB) tests were performed, and the modified beam theory (MBT) method and three different data criteria (i.e. the deviation from linearity (NL), the 5% offset/maximum load (5%/Max) and visual observation (VIS)) were used to evaluate the mode I fracture toughness (GIc). It was found that the GIc of S + C and J + C composites increased by hybridization of pure sisal and jute fabrics and that the intralaminar hybridization limited the crack propagation. An X-ray microcomputed tomography (µCT) equipment was used to visualize the delamination and the form of the front of cracks inside the hybrid composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dong C (2018) Review of natural fibre-reinforced hybrid composites. J Reinf Plast Compos 37:331–348

    Article  Google Scholar 

  2. Lau K, Hung P, Zhu MH, Hui D (2018) Properties of natural fibre composites for structural engineering applications. Compos Part B Eng 136:222–233

    Article  Google Scholar 

  3. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25

    Article  Google Scholar 

  4. de Queiroz HFM, Banea MD, Cavalcanti DKK (2020) Experimental analysis of adhesively bonded joints in synthetic-and natural fibre-reinforced polymer composites. J Compos Mater 54:1245–1255

    Article  Google Scholar 

  5. Ferreira BT, da Silva LJ, Panzera TH et al (2019) Sisal-glass hybrid composites reinforced with silica microparticles. Polym Test 74:57–62

    Article  Google Scholar 

  6. Tomczak F, Satyanarayana KG, Sydenstricker THD (2007) Studies on lignocellulosic fibers of Brazil: part III – Morphology fibers and properties of Brazilian curaua. Compos Part A Appl Sci Manuf 38:2227–2236

    Article  Google Scholar 

  7. Ramzy A, Beermann D, Steuernagel L et al (2014) Developing a new generation of sisal composite fibres for use in industrial applications. Compos Part B Eng 66:287–298

    Article  Google Scholar 

  8. Sahu P, Gupta MK (2017) Sisal (Agave sisalana) fibre and its polymer-based composites: a review on current developments. J Reinf Plast Compos 36:1759–1780

    Article  Google Scholar 

  9. Ashraf MA, Zwawi M, Taqi Mehran M et al (2019) Jute Based Bio and hybrid composites and their applications. Fibers 7:77

    Article  Google Scholar 

  10. Zah R, Hischier R, Leão AL, Braun I (2007) Curauá fibers in the automobile industry—a sustainability assessment. J Clean Prod 15:1032–1040

    Article  Google Scholar 

  11. Bernard SS, Jayakumari LS (2018) Pressure and temperature sensitivity analysis of palm fiber as a biobased reinforcement material in brake pad. J Braz Soc Mech Sci Eng 40:1–12

    Article  Google Scholar 

  12. Ishak NM, Sivakumar D, Mansor MR (2018) The application of TRIZ on natural fibre metal laminate to reduce the weight of the car front hood. J Braz Soc Mech Sci Eng 40:1–12

    Article  Google Scholar 

  13. Lima RAA, Cavalcanti DKK, Neto JSS et al (2020) Effect of surface treatments on interfacial properties of natural intralaminar hybrid composites. Polym Compos 41:314–325

    Article  Google Scholar 

  14. Shesan OJ, Stephen AC, Chioma AG, et al (2019) Improving the mechanical properties of natural fiber composites for structural and biomedical applications. In: Renewable and sustainable composites. IntechOpen

  15. Cavalcanti DKK, Banea MD, Neto JSS et al (2019) Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Compos Part B Eng 175:107149

    Article  Google Scholar 

  16. Braga RA, Magalhaes PAA (2015) Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Mater Sci Eng C 56:269–273

    Article  Google Scholar 

  17. Pereira AL, Banea MD, Neto JSS, Cavalcanti DKK (2020) Mechanical and thermal characterization of natural intralaminar hybrid composites based on sisal. Polymers (Basel) 12:866

    Article  Google Scholar 

  18. Balaji A, Sivaramakrishnan K, Karthikeyan B et al (2019) Study on mechanical and morphological properties of sisal/banana/coir fiber–reinforced hybrid polymer composites. J Braz Soc Mech Sci Eng 41:1–10

    Article  Google Scholar 

  19. Papa I, Ricciardi MR, Antonucci V et al (2018) Impact behaviour of hybrid basalt/flax twill laminates. Compos Part B Eng 153:17–25

    Article  Google Scholar 

  20. Zin MH, Abdan K, Norizan MN (2019) The effect of different fiber loading on flexural and thermal properties of banana/pineapple leaf (PALF)/glass hybrid composite. In: Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, pp 1–17

  21. Budhe S, de Barros S, Banea MD (2019) Theoretical assessment of the elastic modulus of natural fiber-based intra-ply hybrid composites. J Braz Soc Mech Sci Eng 41:263

    Article  Google Scholar 

  22. Hodgkinson JM (2000) Mechanical testing of advanced fibre composites. Elsevier, Amsterdam

    Book  Google Scholar 

  23. Tay TE (2003) Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl Mech Rev 56:1–31

    Article  Google Scholar 

  24. Pereira AB, De Morais AB, De Moura MFSF, Magalhães AG (2005) Mode I interlaminar fracture of woven glass/epoxy multidirectional laminates. Compos Part A Appl Sci Manuf 36:1119–1127

    Article  Google Scholar 

  25. ASTM D5528: Mode I fracture toughness of unidirectional fiber–reinforced polymer matrix composites. American Society for Testing and Materials

  26. Reis JML, Machado JJM, Marques EAS, et al (2020) Displacement rate effect in the fracture toughness of glass fiber reinforced polyurethane. J Compos Mater 0021998320908300

  27. Nasuha N, Azmi AI, Tan CL (2017) A review on mode-I interlaminar fracture toughness of fibre reinforced composites. J Phys Conf Ser 908:0–8

    Article  Google Scholar 

  28. Almansour FA, Dhakal HN, Zhang ZY (2017) Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Compos Struct 168:813–825

    Article  Google Scholar 

  29. Chen Q, Dai C, Fang C et al (2019) Mode I interlaminar fracture toughness behavior and mechanisms of bamboo. Mater Des 183:108132

    Article  Google Scholar 

  30. Ravandi M, Teo WS, Tran LQN et al (2016) The effects of through-the-thickness stitching on the Mode I interlaminar fracture toughness of flax/epoxy composite laminates. Mater Des 109:659–669

    Article  Google Scholar 

  31. Neto JSS, Lima RAA, Cavalcanti DKK et al (2019) Effect of chemical treatment on the thermal properties of hybrid natural fiber–reinforced composites. J Appl Polym Sci 136:47154

    Article  Google Scholar 

Download references

Acknowledgements

This project is partially supported by the National Council for Scientific and Technological Development (CNPq), processes 308478/2017-7 and 424499/2016-9 and FAPERJ, Project No. E_10/245.202/2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Pereira or M. D. Banea.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, A.L., Banea, M.D. & Pereira, A.B. Effect of intralaminar hybridization on mode I fracture toughness of natural fiber-reinforced composites. J Braz. Soc. Mech. Sci. Eng. 42, 451 (2020). https://doi.org/10.1007/s40430-020-02525-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02525-w

Keywords

Navigation