Skip to main content
Log in

Influence of geometric nonlinearity of rectangular plate on vibration reduction performance of nonlinear energy sink

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The differences between the vibration reduction of a NES (nonlinear energy sink) on a nonlinear plate and a linear plate are compared, and the effect of NES on the nonlinear plate is mainly analyzed. The nonlinear equations of the plates connected to NES are derived and subsequently solved by the complexification-averaging method and least square method. The amplitude of the first mode of the nonlinear plate is several times higher than that of the linear plate under large excitation when the two plates are attached to identical NES. The amplitudes of the second mode of the two NES equipped plate are similar. However, super-harmonic resonance responses of the two systems are significantly different. The evolution of the higher branch responses in super-harmonic resonance frequency band of the second mode is analyzed, and found to be significantly different with respect to that in the primary resonance frequency band of the first mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yamaguchi and N. Harnpornchai, Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations, Earthq. Eng. Struct. D, 22 (1993) 51–62.

    Article  Google Scholar 

  2. O. F. Tigli, Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads, J. Sound Vib., 331 (2012) 3035–3049.

    Article  Google Scholar 

  3. C. L. Davis and G. A. Lesieutre, An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness, J. Sound Vib., 232 (2000) 601–617.

    Article  Google Scholar 

  4. H. Frahm, A device for damping vibrations of bodies, US Patent 989958, U.S. Patent and Trademark Office (1911).

  5. O. V. Gendelman, L. I. Manevitch, A. F. Vakakis and R. M. Closkey, Energy pumping in nonlinear mechanical oscillators: Part I. Dynamics of the underlying Hamiltonian systems, J. Appl. Mech., 68 (2001) 34–41.

    Article  MathSciNet  Google Scholar 

  6. A. F. Vakakis and O. V. Gendelman, Energy pumping in nonlinear mechanical oscillators: Part II. Resonance capture, J. Appl. Mech., 68 (2001) 42–48.

    Article  MathSciNet  Google Scholar 

  7. O. V. Gendelman, E. Gourdon and C. H. Lamarque, Quasiperiodic energy pumping in coupled oscillators under periodic forcing, J. Sound Vib., 294 (2006) 651–662.

    Article  Google Scholar 

  8. E. Gourdon and C. H. Lamarque, Nonlinear energy sink with uncertain parameters, J. Comput. Nonlinear Dynam., 1 (2006) 187–195.

    Article  Google Scholar 

  9. N. E. Wierschem, S. A. Hubbard, J. Luo, L. A. Fahnestock, B. F. Spencer Jr., D. M. McFarland, D. D. Quinn, A. F. Vakakis and L. A. Bergman, Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers, J. Sound Vib., 389 (2017) 52–72.

    Article  Google Scholar 

  10. Y. W. Zhang, B. Yuan, B. Fang and L. Q. Chen, Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink, Nonlinear Dynam., 87 (2017) 1159–1167.

    Article  Google Scholar 

  11. E. Gourc, S. Seguy, G. Michon, A. Berlioz and B. P. Mann, Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink, J. Sound Vib., 355 (2015) 392–406.

    Article  Google Scholar 

  12. A. E. Mamaghani, S. E. Khadem and S. Bab, Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink, Nonlinear Dynam., 86 (2016) 1761–1795.

    Article  Google Scholar 

  13. G. Kerschen, Y. S. Lee, A. F. Vakakis, D. M. McFarland and L. A. Bergman, Irreversible passive energy transfer in coupled oscillators with essential nonlinearity, SIAM J. Appl. Math., 66 (2006) 648–679.

    Article  MathSciNet  Google Scholar 

  14. L. I. Manevitch, E. Gourdon and C. H. Lamarque, Parameters optimization for energy pumping in strongly nonhomogeneous 2 DOF system, Chaos, Solitons & Fract., 31 (2007) 900–911.

    Article  Google Scholar 

  15. Y. Zhang, L. Tang and K. Liu, Piezoelectric energy harvesting with a nonlinear energy sink, J. Intell. Mater. Syst. Struct., 28 (2017) 307–322.

    Article  Google Scholar 

  16. K. Remick, D. D. Quinn, D. M. McFarland, L. Bergman and A. F. Vakakis, High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity, J. Sound Vib., 370 (2016) 259–279.

    Article  Google Scholar 

  17. J. Zang, T. C. Yuan, Z. Q. Lu, Y. W. Zhang, H. Ding and L. Q. Chen, A lever-type nonlinear energy sink, J. Sound Vib., 437 (2018) 119–134.

    Article  Google Scholar 

  18. J. Zang and L. Q. Chen, Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink, Acta Mech. Sin., 33 (2017) 801–822.

    Article  MathSciNet  Google Scholar 

  19. Z. Zhang, Z. Q. Lu, H. Ding and L. Q. Chen, An inertial nonlinear energy sink, J. Sound Vib., 450 (2019) 199–213.

    Article  Google Scholar 

  20. H. Y. Chen, X. Y. Mao, H. Ding and L. Q. Chen, Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks, Mech. Syst. Signal Pr., 135 (2020) 106383.

    Article  Google Scholar 

  21. Y. W. Zhang, Y. N. Lu, W. Zhang, Y. Y. Teng, H. X. Yang, T. Z. Yang and L. Q. Chen, Nonlinear energy sink with inerter, Mech. Syst. Signal Pr., 125 (2019) 52–64.

    Article  Google Scholar 

  22. Y. M. Wei, S. Wei, Q. L. Zhang, X. J. Dong, Z. K. Peng and W. M. Zhang, Targeted energy transfer of a parallel nonlinear energy sink, Appl. Math. Mech. Engl. Ed., 40 (2019) 621–630.

    Article  MathSciNet  Google Scholar 

  23. J. E. Chen, W. Zhang, M. H. Yao, J. Liu and M. Sun, Vibration reduction in truss core sandwich plate with internal nonlinear energy sink, Compos. Struct., 193 (2018) 180–188.

    Article  Google Scholar 

  24. J. E. Chen, W. He, W. Zhang, M. H. Yao, J. Liu and M. Sun, Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks, Nonlinear Dyn., 91 (2018) 885–904.

    Article  Google Scholar 

  25. Y. Starosvetsky and O. V. Gendelman, Vibration absorption in systems with a nonlinear energy sink: nonlinear damping, J. Sound Vib., 324 (2009) 916–939.

    Article  Google Scholar 

  26. J. E. Chen, M. Sun, W. H. Hu, J. H. Zhang and Z. C. Wei, Performance of non-smooth nonlinear energy sink with descending stiffness, Nonlinear Dyn., 100 (2020) 255–267.

    Article  Google Scholar 

  27. M. Parseh, M. Dardel, M. H. Ghasemi and M. H. Pashaei, Steady state dynamics of a nonlinear beam coupled to an nonlinear energy sink, Int. J. Nonlin. Mech., 79 (2016) 48–65.

    Article  Google Scholar 

  28. M. Kani, S. E. Khadem, M. H. Pashaei and M. Dardel, Vibration control of a nonlinear beam with a nonlinear energy sink, Nonlinear Dyn., 83 (2016) 1–22.

    Article  MathSciNet  Google Scholar 

  29. R. Viguie and G. Kerschen, Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology, J. Sound Vib., 326 (2009) 780–793.

    Article  Google Scholar 

  30. T. T. Pham, C. H. Lamarque and S. Pernot, Passive control of one degree of freedom nonlinear quadratic oscillator under combination resonance, Commun. Nonlinear Sci. Numer. Simulai, 16 (2011) 2279–2288.

    Article  MathSciNet  Google Scholar 

  31. O. V. Gendelman and T. Bar, Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink, Physica D, 239 (2010) 220–229.

    Article  MathSciNet  Google Scholar 

  32. E. Domany and O. V. Gendelman, Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink, J. Sound Vib., 332 (2013) 5489–5507.

    Article  Google Scholar 

  33. Y. S. Lee, A. F. Vakakis, L. A. Bergman and D. M. McFarland, Suppression of limit cycle oscillations in the Van der Pol oscillator by means of passive non-linear energy sinks, Struct. Control Health Monit., 13 (2006) 41–75.

    Article  Google Scholar 

  34. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells, CRC Press, Boca Raton (2004).

    Book  Google Scholar 

  35. J. E. Chen, W. Zhang, M. Sun, M. H. Yao and J. Liu, Parametric study on nonlinear vibration of composite truss core sandwich plate with internal resonance, J. Mech. Sci. Technol., 30 (2016) 4133–4142.

    Article  Google Scholar 

  36. L. I. Manevitch, A. I. Musienko and C. H. Lamarque, New analytical approach to energy pumping problem in strongly nonhomogeneous 2dof systems, Meccanica, 42 (2007) 77–83.

    Article  MathSciNet  Google Scholar 

  37. A. F. Vakakis, O. V. Gendelman, L. A. Bergman, D. M. McFarland, G. Kerschen and Y. S. Lee, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I and II, Springer, Berlin (2008).

    MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 11872274 and 11832002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-en Chen.

Additional information

Recommended by Editor No-cheol Park

Weixing Zhang is currently a graduate student at Tianjin University of Technology. His research interest is nonlinear vibration control.

Jianen Chen received his Ph.D. degree from Beijing University of Technology. He is currently an Associate Professor at Tianjin University of Technology. His research interest is nonlinear dynamics in mechanical system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Wx., Chen, Je. Influence of geometric nonlinearity of rectangular plate on vibration reduction performance of nonlinear energy sink. J Mech Sci Technol 34, 3127–3135 (2020). https://doi.org/10.1007/s12206-020-0704-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-020-0704-4

Keywords

Navigation