Skip to main content
Log in

Thermal buckling and dynamic characteristics of composite plates under pressure load

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The effect of geometrical nonlinearities due to pressure load on the thermal buckling and dynamic characteristics of composite plates are investigated in this paper, which is the main contribution of this research work. The mechanical behavior of the plate is described with the first-order shear deformation theory. The geometrical nonlinearity due to both thermal effect and pressure load is introduced in the finite element model of the plate via additional stiffness matrices. Thermal buckling and modal analysis of a four-sided simply supported rectangular composite plate under different pressure fields are conducted. Numerical results show that both the mode frequencies and critical buckling temperature of the plate rise with the increase of the pressure. The vibrational mode shapes change with the gradient pressure load field. The maximum buckled deflection point moves from the center to the place where is easier to reach compressive stress state under uniform thermal load. The pressure distribution has a significant effect on the buckling mode shapes of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a, b, h :

Dimension of the plate along x, y, z direction

u, v, w :

Deflections along x, y, z direction

φx, φy :

Rotational displacement of x-axis and y-axis

W :

Virtual work

N :

i-th shape function

B :

Strain-nodal displacement matrix

D :

Material property matrix

K0, Kσ :

Initial and additional stiffness matrix

K :

Structural stiffness matrix

K T0 :

Tangent stiffness matrix

P(x):

Pressure field along the x-direction

P 1 :

Maximum pressure

S :

Initial elemental stress matrix

α :

Thermal expansion coefficient

T :

Temperature environment

ΔT :

Temperature variation

T cr :

Critical buckling temperature

U :

Nodal displacement vector

ε :

Strain vector

σx, σy :

x-component and y-component of stress

ω :

Circular frequency

λ i :

i-th eigenvalue (buckling load factor)

Ψ i :

i-th eigenvector (buckling mode shape)

L, nL :

Linear and nonlinear

T:

Transpose

References

  1. Q. Chen, Q. Fei, Y. Li, S. Wu and P. Zhang, Prediction of statistical energy analysis parameters in thermal environment, Journal of Spacecraft and Rockets, 56(3) (2018) 687–694.

    Article  Google Scholar 

  2. S. Chen, Q. Fei, D. Jiang and Z. Cao, Determination of thermoelastic parameters for dynamical modeling of 2.5D C/SiC braided composites, Journal of Mechanical Science and Technology, 32(1) (2018) 231–243.

    Article  Google Scholar 

  3. Y. Li, S. B. Mulani, Q. Fei, S. Wu and P. Zhang, Vibro-acoustic analysis under stationary and non-stationary random excitations with KLE/FEM/BEM, Aerospace Science and Technology, 66 (2017) 203–215.

    Article  Google Scholar 

  4. Y. Li, S. B. Mulani, R. K. Kapania, Q. Fei and S. Wu, Nonstationary random vibration analysis of structures under multiple correlated normal random excitations, Journal of Sound and Vibration, 400 (2017) 481–507.

    Article  Google Scholar 

  5. Y. Li, S. B. Mulani, K. M. L. Scott, R. K. Kapania, S. Wu and Q. Fei, Non-stationary random vibration analysis of multi degree systems using auto-covariance orthogonal decomposition, Journal of Sound and Vibration, 372 (2016) 147–167.

    Article  Google Scholar 

  6. J. M. Whitney and A. W. Leissa, Analysis of heterogeneous anisotropic plates, Journal of Applied Mechanics, 36(2) (1969) 261–266.

    Article  Google Scholar 

  7. I. Kreja, R. Schmidt and J. Reddy, Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures, International Journal of Non-Linear Mechanics, 32(6) (1997) 1123–1142.

    Article  Google Scholar 

  8. A. Barut, E. Madenci, J. Heinrich and A. Tessler, Analysis of thick sandwich construction by a {3, 2}-order theory, International Journal of Solids and Structures, 38(34–35) (2001) 6063–6077.

    Article  Google Scholar 

  9. H. Murakami, Laminated composite plate theory with improved in-plane responses, Journal of Applied Mechanics, 53(3) (1986) 661–666.

    Article  Google Scholar 

  10. M. C. Trinh and S. E. Kim, A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis, Aerospace Science and Technology, 94 (2019) 105356.

    Article  Google Scholar 

  11. H. D. Duc, V. D. Thom, M. P. Phuc and D. D. Nguyen, Validation simulation for free vibration and buckling of cracked Mindlin plates using phase-field method, Mechanics of Advanced Materials and Structures, 26(12) (2019) 1018–1027.

    Article  Google Scholar 

  12. N. V. Hoai, D. H. Doan, M. K. Nguyen, T. V. Do and H. T. Tran, Phase-field buckling analysis of cracked stiffened functionally graded plates, Composite Structures, 217 (2019) 50–59.

    Article  Google Scholar 

  13. T. N. Doan et al., Analysis of stress concentration phenomenon of cylinder laminated shells using higher-order shear deformation Quasi-3D theory, Composite Structures, 232 (2020) 111526.

    Article  Google Scholar 

  14. P. Jeyaraj, Buckling and free vibration behavior of an isotropic plate under nonuniform thermal load, International Journal of Structural Stability and Dynamics, 13(3) (2013) 1250071.

    Article  Google Scholar 

  15. Y. Yu, H.-S. Shen, H. Wang and D. Hui, Postbuckling of sandwich plates with graphene-reinforced composite face sheets in thermal environments, Composites Part B: Engineering, 135 (2018) 72–83.

    Article  Google Scholar 

  16. R. Javaheri and M. R. Eslami, Thermal buckling of functionally graded plates, AIAA Journal, 40(1) (2002) 162–169.

    Article  Google Scholar 

  17. P. H. Cong, M. C. Trinh, D. K. Nguyen and D. D. Nguyen, Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT, Aerospace Science and Technology, 77 (2018) 419–428.

    Article  Google Scholar 

  18. M. C. Trinh and S. E. Kim, Nonlinear thermomechanical behaviors of thin functionally graded sandwich shells with double curvature, Composite Structures, 195 (2018) 335–348.

    Article  Google Scholar 

  19. D. D. Nguyen, D. Q. Vu, P. D. Nguyen and M. C. Trinh, Nonlinear dynamic response of functional graded porous plates on elastic foundation subjected to thermal and mechanical loads, Journal of Applied and Computational Mechanics, 4(4) (2018) 245–259.

    Google Scholar 

  20. S. E. Kim, D. D. Nguyen, H. N. Vu and V. S. Nguyen, Nonlinear vibration and dynamic buckling of eccentrically oblique stiffened FGM plates resting on elastic foundations in thermal environment, Thin-Walled Structures, 142 (2019) 287–296.

    Article  Google Scholar 

  21. D. D. Nguyen, S. E. Kim, Q. Q. Tran, T. M. Duong and H. C. Nguyen, Nonlinear buckling of eccentrically stiffened nanocomposite cylindrical panels in thermal environments, Thin-Walled Structures, 146 (2020) 106428.

    Article  Google Scholar 

  22. M. C. Trinh, D. D. Nguyen and S. E. Kim, Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature, Aerospace Science and Technology, 87 (2019) 119–132.

    Article  Google Scholar 

  23. T. V. Do, D. H. Doan, D. D. Nguyen and T. Q. Bui, Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface, Composite Structures, 182 (2017) 542–548.

    Article  Google Scholar 

  24. Q. Chen, Q. Fei, H. Devriendt, S. Wu, B. Pluymers and W. Desmet, The dynamic bending analysis of plates under thermal load using an efficient wave-based method, Thin-Walled Structures, 149 (2019) 106421.

    Article  Google Scholar 

  25. J. Li, Y. Narita and Z. Wang, The effects of non-uniform temperature distribution and locally distributed anisotropic properties on thermal buckling of laminated panels, Composite Structures, 119 (2015) 610–619.

    Article  Google Scholar 

  26. X. Li et al., Buckling and vibro-acoustic response of the clamped composite laminated plate in thermal environment, International Journal of Mechanical Sciences, 119 (2016) 370–382.

    Article  Google Scholar 

  27. I. Kreja and A. Sabik, Equivalent single-layer models in deformation analysis of laminated multilayered plates, Acta Mechanica, 230(8) (2019) 2827–2851.

    Article  MathSciNet  Google Scholar 

  28. T. P. Khatua and Y. K. Cheung, Bending and vibration of multilayer sandwich beams and plates, International Journal for Numerical Methods in Engineering, 6(1) (1973) 11–24.

    Article  Google Scholar 

  29. S. Yang and Q. Yang, Geometrically nonlinear random vibration responses of composite plates subjected to acoustic excitation, AIAA Journal, 56(7) (2018) 2827–2839.

    Article  Google Scholar 

  30. R. Zhao, K. Yu, G. M. Hulbert, Y. Wu and X. Li, Piecewise shear deformation theory and finite element formulation for vibration analysis of laminated composite and sandwich plates in thermal environments, Composite Structures, 160 (2017) 1060–1083.

    Article  Google Scholar 

  31. T. J. Ypma, Historical development of the Newton-Raphson method, SIAM Review, 37(4) (1995) 531–551.

    Article  MathSciNet  Google Scholar 

  32. X. Li, K. Yu and R. Zhao, Vibro-acoustic response of a clamped rectangular sandwich panel in thermal environment, Applied Acoustics, 132 (2018) 82–96.

    Article  Google Scholar 

  33. W. Huang, S. Li, J. Liu and Z. Wang, Investigation on high angle of attack characteristics of hypersonic space vehicle, Science China-Technological Sciences, 55(5) (2012) 1437–1442.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the supports of the National Natural Science Foundation of China (11572086, 11802059), the Natural Science Foundation of Jiangsu Province (BK20170022, BK20170656, BK20180062), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Fei.

Additional information

Recommended by Editor No-cheol Park

Qingguo Fei is a Professor of the Institute of Aerospace Machinery and Dynamics, Southeast University, Nanjing, China. His research interest includes structural dynamics, nonlinear analysis and modal analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Fei, Q., Wu, S. et al. Thermal buckling and dynamic characteristics of composite plates under pressure load. J Mech Sci Technol 34, 3117–3125 (2020). https://doi.org/10.1007/s12206-020-0702-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-020-0702-6

Keywords

Navigation