Skip to main content

Advertisement

Log in

Population biology and natural history of the grassland butterfly Euryades corethrus (Papilionidae: Troidini), an endangered species from South American Campos

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

We studied the population biology and natural history of the endangered Swallowtail butterfly, Euryades corethrus to establish parameters for its conservation. We used capture-mark-recapture techniques and observations to study demography, mobility, foraging strategies, and sexual behavior. We captured 588 males and 367 females. Daily captures varied from zero to 44 per sex; sex ratio was male-biased. Abundance estimates showed that the population peaked during early spring and summer. Survival probability related to age, while temperature negatively affected recapture probability. Wing size varied throughout the study similarly for males and females, and both sexes displayed similar mobility. The distribution of flowers along sampling transects was not homogenous; Aristolochia sessilifolia was the only host plant recorded. The number of butterfly captures was higher in meadows and shrublands when compared to swamplands. Both the presence of flowers and host plants increased the chances of capturing individuals. The results shown here are relevant to design conservation strategies for the species, suggesting that classic conservation strategies, aimed to maintain a single patch of habitat protecting a single population, may not be the best strategy for the E. corethrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Caski F (eds) Proceedings of the second international symposium on information theory. Budapest, Akademiai Kiados

    Google Scholar 

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–267

    CAS  Google Scholar 

  • Atencio GWG (2014) Relações ecológicas entre Euryades corethrus Boisduval e Euryades duponchelii Lucas (Lepidoptera: Troidini) avaliadas através de modelagem preditiva de distribuição de espécies e interações com suas plantas hospedeiras e biogeografia (M. Sc. Dissertation). Federal University of Rio Grande do Sul, University Press, Porto Alegre

  • Atencio GWG (2020). Status de conservação e estruturação populacional de Euryades corethrus (LEPIDOPTERA, PAPILIONIDAE) utilizando modelagem de nicho e marcadores moleculares. (Ph.D. Thesis). Federal University of Rio Grande do Sul, University Press, Porto Alegre

  • Arnason AN (1972) Parameter estimates from mark-recapture experiments on two populations subject to migration and death. Res Pop Ecol 13:97–113

    Google Scholar 

  • Auckland JN, Debinski DM, Clark WR (2004) Survival, movement, and resource use of the butterfly Parnassius clodius. Ecol Entomol 29:139–149

    Google Scholar 

  • Baguette M, Mennechez G, Petit S, Schtickzelle N (2003) Effect of habitat fragmentation on dispersal in the butterfly Proclossiana eunomia. C R Biol 326:200–209

    Google Scholar 

  • Baguette M, Stevens V (2013) Predicting minimum area requirements of butterflies using life-history traits. J Insect Conserv 17:645–652

    Google Scholar 

  • Beccaloni GW, Viloria AL, Hall SK, Robins GS (2008) Catalogue of the hostplants of the Neotropical butterflies. Monografias Tercer Milenio, Zaragoza

    Google Scholar 

  • Beirão MV, Campos-Neto FC, Pimenta IA, Freitas AVL (2012) Population biology and natural history of Parides burchellanus (Papilionidae: Papilioninae: Troidini), an endangered Brazilian butterfly. Ann Entomol Soc Am 105:36–43

    Google Scholar 

  • Betts CR, Wootton RJ (1988) Wing Shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis. J Exp Biol 138:271–288

    Google Scholar 

  • Biezanko CM, Ruffinelli A, Link D (1974) Plantas y otras sustancias alimenticias de las orugas de los lepidopteros uruguayos. Host-plants and any other foods of the lepidopterous larvae of the Uruguay. Cienc Rural 2:107–148

    Google Scholar 

  • Bilenca D, Miñarro F (2004) Identificación de Áreas Valiosas de Pastizal (AVPs) en las Pampas y Campos de Argentina Uruguay y sur de Brasil. Fundación Vida Silvestre Argentina, Buenos Aires

    Google Scholar 

  • Boggs CL (2003) Environmental variation, life histories, and allocation. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies: ecology and evolution taking flight. University Press, Chicago

    Google Scholar 

  • Brownie C, Hines JE, Nichols JD, Pollock KH, Hestbeck JB (1993) Capture-recapture studies for multiple strata including non-Markovian transitions. Biometrics 49:1173–1187

    Google Scholar 

  • Brussard PF, Ehrlich PR (1970) The population Structure of Erebia epipsodea (Lepidoptera: Satyrinae). Ecology 1:119–129

    Google Scholar 

  • Brussard PF, Ehrlich PR, Singer MC (1974) Adult movements and population structure in Euphydrias editha. Evolution 28:408–415

    CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New York

    Google Scholar 

  • Cant ET, Smith AD, Reynolds DR, Osborne JL (2005) Tracking butterfly flight paths across the landscape with harmonic radar. Proc R Soc B 272:785–790

    CAS  PubMed  Google Scholar 

  • Caporale A, Romanowski HP, Mega NO (2017) Winter is coming: Diapause in the subtropical swallowtail butterfly Euryades corethrus (Lepidoptera, Papilionidae) is triggered by the shortening of day length and reinforced by low temperatures. J Exp Zool A 327:182–188

    Google Scholar 

  • Carvalho APS, Orr AG, Kawahara AY (2017) A review of the occurrence and diversity of the sphragis in butterflies (Lepidoptera, Papilionoidea). ZooKeys 694:41–70

    Google Scholar 

  • Casula P, Nichols JD (2003) Temporal variability of local abundance, sex ratio and activity in the Sardinian chalk hill blue butterfly. Oecologia 136:374–382

    PubMed  Google Scholar 

  • D’Aniello B, Stanislao I, Bonelli S, Balletto E (2011) Haying and grazing effects on the butterfly communities of two Mediterranean-area grasslands. Biodivers Conserv 20:1731–1744

    Google Scholar 

  • Davis JD, Debinski DM, Danielson BJ (2007) Local and landscape effects on the butterfly community in fragmented Midwest USA prairie habitats. Landsc Ecol 22:1341–1354

    Google Scholar 

  • Dolibaina DR, Carneiro E, Dias FMS, Mielke OHH, Casagrande MM (2010) Unpublished records of threatened butterflies (Papilionoidea and Hesperioidea) to Paraná State, Brazil: new contributions for the evaluation of threat criteria. Biota Neotrop 3:75–81

    Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kuhn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schroder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Google Scholar 

  • Dover JW, Sparks TH, Greatorex-Davies JN (1997) The importance of shelter for butterflies in open landscapes. J Insect Conserv 1:89–97

    Google Scholar 

  • Dover JW, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13:3–27

    Google Scholar 

  • Ehrlich PR, Davidson SE (1960) Techniques for capture-recapture studies of Lepidoptera populations. J Lepid Soc 14:227–229

    Google Scholar 

  • Ehrlich PR, Gilbert LE (1973) Population structure and dynamics of the tropical butterfly Heliconius ethilla. Biotropica 5:69–82

    Google Scholar 

  • Filz KJ, Engler JO, Stoffels J, Weitzel M, Schmitt T (2013) Missing the target? A critical view on butterfly conservation efforts on calcareous grasslands in south-western Germany. Biodivers Conserv 22:2223–2241

    Google Scholar 

  • Francini RB (2010) Métodos para estudar ecologia de populações de borboletas. E-book, Santos SP

    Google Scholar 

  • Freitas AVL, Ramos RR (2001) Population Biology of Parides anchises nephalion (Papilionidae) in a costal site in southeast Brazil. Braz J Biol 61:623–630

    CAS  PubMed  Google Scholar 

  • FZB (2013). Avaliação do Estado de Conservação de Espécies da Fauna do Rio Grande do Sul 2012/2013. https://www.liv.fzb.rs.gov.br/livcpl/?id_modulo=1&id_uf=23https://www.liv.fzb.rs.gov.br/livcpl/?id_modulo=1&id_uf=23. Acessed 20 January 2015

  • Gautreau P (2010) Rethinking the dynamics of woody vegetation in Uruguayan Campos, 1800–2000. J Hist Geogr 36:194–204

    Google Scholar 

  • Grice H, Nunez-Bustos E, Mega NO, Dias FMS, Rosa A, Freitas AVL, Marini-Filho OJ (2019) Euryades corethrus (amended version of 2018 assessment). IUCN: e.T160549A145166527

  • Heinrich B (1993) The hot-blooded insects: mechanisms and evolution of thermoregulation. University Press, Cambridge

    Google Scholar 

  • Herkenhoff EV, Monteiro RF, Esperanco AP, Freitas AVL (2013) Population biology of the endangered fluminense swallowtail butterfly Parides ascanius (Papilionidae: Papilioninae: Troidini). J Lep Soc 67:29–34

    Google Scholar 

  • Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735

    Google Scholar 

  • Hodgson JA, Moilanen A, Wintle BA, Thomas CD (2011) Habitat area, quality and connectivity: striking the balance for efficient conservation. J Appl Ecol 48:148–152

    Google Scholar 

  • Hokit DG, Stith BM, Branch LC (1999) Effects of landscape structure in Florida scrub: a population perspective. Ecol Applic 9:124–134

    Google Scholar 

  • Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135

    CAS  PubMed  Google Scholar 

  • Isaac NJB, Cruickshanks KL, Weddle AM, Rowcliffe JM, Brereton TM, Dennis RLH, Shuker DM, Thomas CD (2011) Distance sampling and the challenge of monitoring butterfly populations. Methods Ecol Evo 2:585–594

    Google Scholar 

  • Jiggins FM, Hurst GDD, Majerus MEN (1998) Sex ratio distortion in Acraea encedon (Lepidoptera: Nymphalidae) is caused by a male-killing bacterium. Heredity 81:87–91

    Google Scholar 

  • Karlsson B, Wiklund C (2005) Butterfly life history and temperature adaptations; dry open habitats select for increased fecundity and longevity. J Anim Ecol 74:99–104

    Google Scholar 

  • Kemp DJ, Zalucki MP (1999) Method of handling affects post-capture encounter probabilities in male Hypolimnas Bolina (L.) (Nymphalidae). J Lep Soc 53:138–141

    Google Scholar 

  • Kéry M, Schaub M (2011) Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic Press, Cambridge

    Google Scholar 

  • Kingsolver JG (1999) Experimental analyses of wing size, flight, and survival in the western white butterfly. Evolution 53:1479–1490

    PubMed  Google Scholar 

  • Klitzke CF, Brown KS (2000) The occurrence of aristolochic acids in neotropical troidine swallowtails (Lepidoptera: Papilionidae). Chemoecology 10:99–102

    CAS  Google Scholar 

  • Konvicka M, Benes J, Cizek O, Kopecek F, Konvicka O, Vitaz L (2008) How too much care kills species: Grassland reserves, agrienvironmental schemes and extinction of Colias myrmidone (Lepidoptera: Pieridae) from its former stronghold. J Insect Conserv 12:519–525

    Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Matter SF, Roland J, Moilanen A, Hanski I (2004) Migration and survival of parnassius smintheus: detecting effects of habitat for individual butterflies. Ecol Appl 14:1526–1534

    Google Scholar 

  • Mielke OHH, Casagrande MM (2004) Borboletas. In: Mikich SB, Bernils RS (eds) Livro vermelho da fauna ameaçada no Estado do Paraná. Instituto Ambiental do Paraná, Curitiba, pp 713–739

    Google Scholar 

  • Miller WE (1977) Wing measure as a size index in Lepidoptera: the family Olethreutidae. Ann Entomol Soc Am 70:253–256

    Google Scholar 

  • Miñarro F, Bilenca D (2008) The conservation status of temperate grasslands in central Argentina. Fundación Vida Silvestre Argentina, Buenos Aires

    Google Scholar 

  • MMA (2007) Priority Areas for the Conservation, Sustainable Use and Benefit Sharing of Brazilian Biological Diversity. Update of MMA Administrative Ruling N° 9, of 23 January 2007. Ministry of the Environment Editing Center, Brasília

  • Modernel P, Rossing WAH, Corbeels M, Dogliotti S, Picasso V, Tittonell P (2016) Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environ Res Lett 11:113002

    Google Scholar 

  • Modin H, Öckinger E (2020) Mobility, habitat selection and population connectivity of the butterfly Lycaena helle in central Sweden. J Insect Conserv: https://doi.org/10.1007/s10841-020-00254-y

    Article  Google Scholar 

  • Moreno JA (1961) Clima do Rio Grande do Sul. Secretaria da Agricultura do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  • Narita S, Kageyama D, Nomura M, Fukatsu T (2007) Unexpected mechanism of symbiont-induced reversal of insect sex: feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development. Appl Environ Microbiol 73:4332–4341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noordwijk CGE, Flierman DE, Remke E, DeVries MFW, Berg MP (2012) Impact of grazing management on hibernating caterpillars of the butterfly Melitaea cinxia in calcareous grasslands. J Insect Conserv 16:909–920

    Google Scholar 

  • Núñez-Bustos EN (2010) Mariposas de la ciudad de Buenos Aires y alredores. Vazquez Mazini, Buenos Aires

    Google Scholar 

  • Olson DM et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938

    Google Scholar 

  • Overbeck GE, Muller SC, Fidelis A, Pfadenhauer J, Pillar VP, Blanco CC, Boldrini II, Both R, Forneck ED (2007) Brazil’s neglected biome: the south Brazilian Campos. Perspect Plant Ecol Syst 9:101–116

    Google Scholar 

  • Paim AC, Di Mare RA (2002) Ecologia de Papilionidae. I: Parâmetros biológicos e demográficos de Parides agavus (Papilioninae, Troidini) no sul do Brasil. Biociências 10:33–48

    Google Scholar 

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State–space models of individual animal movement. Trends Ecol Evol 23:87–94

    PubMed  Google Scholar 

  • Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4:439–473

    Google Scholar 

  • Pennekamp F, Monteiro E, Schmitt T (2013) The larval ecology of the butterfly Euphydryas desfontainii (Lepidoptera: Nymphalidae) in SW-Portugal: food plant quantity and quality as main predictors of habitat quality. J Insect Conserv 17:195–206

    Google Scholar 

  • Pillar VD, Müller SC, Castilhos ZMS, Jacques AVA (2009) Campos Sulinos: Conservação e Uso Sustentável da Biodiversidade. Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • Pillar VP, Lange O (2015) Os Campos do Sul. Rede Campos Sulinos, UFRGS, Porto Alegre

    Google Scholar 

  • Pocewicz A, Morgan P, Eigenbrode SD (2009) Local and landscape effects on butterfly density in northern Idaho grasslands and forests. J Insect Conserv 13:593–601

    Google Scholar 

  • Polic D, Fiedler K, Nel C (2014) Mobility of ringlet butterflies in high-elevation alpine grassland: effects of habitat barriers, resources, and age. J Insect Conserv 18:1153–1161

    Google Scholar 

  • Pollard E (1988) Temperature, rainfall and butterfly numbers. J Appl Ecol 25:819–828

    Google Scholar 

  • Pryke SR, Samways MJ (2001) Width of grassland linkages for the conservation of butterflies in South African afforested areas. Biol Conserv 101:85–96

    Google Scholar 

  • QGIS Development Team (2017). Quantum Geographic Information System Desktop v. Open Source Geospatial Foundation Project. https://qgis.osgeo.org

  • Rhainds M, Heard S (2015) Sampling procedures and adult sex ratios in spruce budworm. Entomol Exp Appl 154:91–101

    Google Scholar 

  • Roesch LFW, Vieira FCB, Pereira VA, Schünemann AL, Teixeira IF, Senna AJT, Stefenon VM (2009) The Brazilian Pampa: a fragile biome. Diversity 1:182–198

    Google Scholar 

  • Rosin ZM, Myczko L, Skórka P, Lenda M, Moron D, Sparks TH, Tryjanowski P (2010) Butterfly responses to environmental factors in fragmented calcareous grasslands. J Insect Conserv 16:321–329

    Google Scholar 

  • Rutowski RL (1991) The evolution of male mate-locating behavior in butterflies. The Am Nat 138:1121–1139

    Google Scholar 

  • Seber GAF (1992) A review of estimating animal abundance II. Int Stat Rev 60:129–166

    Google Scholar 

  • Scalco VW, Morais ABB, Romanowski HP, Mega NO (2016) Population dynamics of the swallowtail butterfly Battus polystictus polystictus (Butler) (Lepidoptera: Papilionidae) with notes on its natural history. Neotrop Entomol 44:1–11

    Google Scholar 

  • Sculley CE, Boggs CL (1996) Mating systems and sexual division of foraging effort affect puddling behaviour by butterflies. Ecol Entomol 21:193–197

    Google Scholar 

  • Schwarz CJ, Schweigert JF, Arnason AN (1993) Estimating migration rates using tag-recovery data. Biometrics 49:177–193

    Google Scholar 

  • Shreeve TG, Mason CF (1980) The number of butterfly species in woodlands. Oecologia 45:414–418

    CAS  PubMed  Google Scholar 

  • Sims SR, Shapiro AM (1983) Seasonal phenology of Battus philenor (L.) (Papilionidae) in California. J Lepid Soc 37:281–288

    Google Scholar 

  • Swengel AB (1996) Effects of fire and hay management on abundance of prairie butterflies. Biol Conserv 76:73–85

    Google Scholar 

  • Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. University Press, Oxford

    Google Scholar 

  • Thomas CD (1994) Local extinctions, colonizations and distributions: habitat tracking by British butterflies. In: Leather SR, Watt AD, Mills NJ, Walters KFA (eds) Individuals, populations and patterns in ecology. Andover, Intercept

    Google Scholar 

  • Tyler H, Brown KS Jr, Wilson K (1994) Swallowtail butterflies of the Americas. A study in biological dynamics, ecological diversity, biosystematics, and conservation. Scientific Publishers, Gainesville

    Google Scholar 

  • Van Dyck H, Wiklund C (2002) Seasonal butterfly design: morphological plasticity among three developmental pathways relative to sex, flight, and thermoregulation. J Evol Biol 15:216–225

    Google Scholar 

  • Vélez-Martin E, Rocha CH, Blanco C, Azambuja BO, Hasenack H, Pillar VP (2015) Conversão e fragmentação. In: Pillar VP, Lange O (eds) Os Campos do Sul. UFRGS, Porto Alegre, pp 125–131

    Google Scholar 

  • Walter H (1985) Vegetation of the earth and ecological systems of the geo-biosphere. Springer, Berlin

    Google Scholar 

  • Wang Z, Huang Y, Pierce NE (2019) Radio telemetry helps record the dispersal patterns of birdwing butterflies in mountainous habitats: Golden Birdwing (Troides aeacus) as an example. J Insect Conserv 23:729–738

    Google Scholar 

  • Weibull AC, Östman O (2003) Species composition in agroecosystems: The effect of landscape, habitat, and farm management. Basic Appl Ecol 4:349–361

    Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139

    Google Scholar 

  • Zalucki MP, Kitching RL (1982) The analysis and description of movement in adult Danaus plexippus L. (Lepidoptera: Danainae). Behaviour 80:174–197

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Chico Mendes Institute for Biodiversity Conservation (ICMBio) for the collecting license (35153–1), and to the Brazilian National System of Biodiversity Research/National Network for Research and Conservation of Lepidoptera (SiSBiota/RedeLep) for financial support for transportation. The authors also thank, CC Almeida, APS Carvalho, DS Martins, VW Scalco, for field assistance, and APS Carvalho and RAS Laurent for English review. NO Mega (Grant #23038.8306/2010-62) and M Guimarães were both funded by Coordination of Improvement of Higher Level Personnel National Postdoctoral Program (PNPD/CAPES); M. Costa and A Caporale by National Council for Scientific and Technological Development (CNPq), RA Paesi and LL Fucinili by (CAPES), HP Romanowski by CNPq (Grant #304273/2014-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Oliveira Mega.

Ethics declarations

Ethical statements

The authors ensure commitment to the principles of ethical and professional conduct followed by the journal and declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mega, N.O., Guimarães, M., Costa, M.C. et al. Population biology and natural history of the grassland butterfly Euryades corethrus (Papilionidae: Troidini), an endangered species from South American Campos. J Insect Conserv 24, 853–865 (2020). https://doi.org/10.1007/s10841-020-00258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-020-00258-8

Keywords

Navigation